Abstract

The local field approach and kinetic equation method is applied to calculate the surface plasmon radiative damping in a spheroidal metal nanoparticle embedded in any dielectric media. The radiative damping of the surface plasmon resonance as a function of the particle radius, shape, dielectric constant of the surrounding medium, and the light frequency is studied in detail. It is found that the radiative damping grows quadratically with the particle radius and oscillates with altering both the particle size and the dielectric constant of a surrounding medium. Much attention is paid to the electron surface-scattering contribution to the plasmon decay. All calculations of the radiative damping are illustrated by examples on the Au and Na nanoparticles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. K. Sau, A. L. Rogach, F. Jáckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials 22, 1805–1825 (2010).
    [CrossRef]
  2. H. Mertens and A. Polman, “Strong luminescence quantum efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes,” J. Appl. Phys. 105, 044302 (2009).
    [CrossRef]
  3. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
    [CrossRef]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  5. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  6. Y. Bilotsky, N. I. Grigorchuk, and P. M. Tomchuk, “Hot electrons and laser optoacoustics in metal nanoparticles,” Surf. Sci. 603, 3267–3274 (2009).
    [CrossRef]
  7. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
    [CrossRef]
  8. C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
    [CrossRef]
  9. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef]
  10. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
    [CrossRef]
  11. C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7, 318–322 (2007).
    [CrossRef]
  12. M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
    [CrossRef]
  13. J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004).
    [CrossRef]
  14. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
    [CrossRef]
  15. D. Li and Y. Xia, “Welding and patterning in a flash,” Nat. Mater. 3, 753–754 (2004).
    [CrossRef]
  16. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
    [CrossRef]
  17. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
    [CrossRef]
  18. A. Ambrosio, B. Piccirillo, A. Sasso, and E. Santamato, “Experimental and theoretical study of the transient rotation of isotropic transparent microparticles in astigmatic optical tweezers,” Opt. Commun. 230, 337–345 (2004).
    [CrossRef]
  19. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef]
  20. B. J. Soller and D. G. Hall, “Dynamic modifications to the plasmon resonance of a metallic nanoparticle coupled to a planar waveguide: beyond the point-dipole limit,” J. Opt. Soc. Am. B 19, 1195–1203 (2002).
    [CrossRef]
  21. R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65, 155427 (2002);
  22. R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory behavior and enhancement of the surface plasmon linewidth in embedded noble metal nanoparticles,” Eur. Phys. J. D 24, 127–130 (2003).
  23. M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79, 035418 (2009).
    [CrossRef]
  24. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
    [CrossRef]
  25. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
    [CrossRef]
  26. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamical depolarization,” Optic Lett. 8, 581–583 (1983).
    [CrossRef]
  27. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  28. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
    [CrossRef]
  29. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  30. The latter mechanism requires a threshold energy Eib of about 2.38 eV in the Au, whereas the energy of surface plasmon in the Au is 2.29  eV5. In the Ag Esp≈3  eV and Eib≈4  eV5.
  31. J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67, 351–357 (1945).
    [CrossRef]
  32. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continous Media (Pergamon, 1986).
  33. J. D. Jackson, Classical Electrodynamics (Wiley, 2001).
  34. N. I. Grigorchuk and P. M. Tomchuk, “Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect,” Phys. Rev. B 84, 085448 (2011).
    [CrossRef]
  35. For prolate spheroid (a>b=c): R∥≡a and R⊥≡b, but for oblate one (a=b>c): R∥≡b and R⊥≡a.
  36. N. I. Grigorchuk and P. M. Tomchuk, “Theory for absorption of ultrashort laser pulses by spheroidal metallic nanoparticles,” Phys. Rev. B 80, 155456 (2009).
    [CrossRef]
  37. P. M. Tomchuk and N. I. Grigorchuk, “Shape and size effects on the energy absorption by small metallic particles,” Phys. Rev. B 73, 155423 (2006).
    [CrossRef]
  38. Ch. Kittel, Introduction to Solid State Physics (Wiley, 2005).
  39. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A: Pure Appl. Opt. 8, S239–S249 (2006).
    [CrossRef]
  40. N. I. Grigorchuk, “Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix,” Eur. Phys. Lett. 97, 45001 (2012).
    [CrossRef]

2012 (1)

N. I. Grigorchuk, “Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix,” Eur. Phys. Lett. 97, 45001 (2012).
[CrossRef]

2011 (1)

N. I. Grigorchuk and P. M. Tomchuk, “Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect,” Phys. Rev. B 84, 085448 (2011).
[CrossRef]

2010 (1)

T. K. Sau, A. L. Rogach, F. Jáckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials 22, 1805–1825 (2010).
[CrossRef]

2009 (4)

H. Mertens and A. Polman, “Strong luminescence quantum efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes,” J. Appl. Phys. 105, 044302 (2009).
[CrossRef]

Y. Bilotsky, N. I. Grigorchuk, and P. M. Tomchuk, “Hot electrons and laser optoacoustics in metal nanoparticles,” Surf. Sci. 603, 3267–3274 (2009).
[CrossRef]

N. I. Grigorchuk and P. M. Tomchuk, “Theory for absorption of ultrashort laser pulses by spheroidal metallic nanoparticles,” Phys. Rev. B 80, 155456 (2009).
[CrossRef]

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79, 035418 (2009).
[CrossRef]

2008 (2)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[CrossRef]

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

2007 (1)

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7, 318–322 (2007).
[CrossRef]

2006 (3)

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

P. M. Tomchuk and N. I. Grigorchuk, “Shape and size effects on the energy absorption by small metallic particles,” Phys. Rev. B 73, 155423 (2006).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A: Pure Appl. Opt. 8, S239–S249 (2006).
[CrossRef]

2004 (4)

D. Li and Y. Xia, “Welding and patterning in a flash,” Nat. Mater. 3, 753–754 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

A. Ambrosio, B. Piccirillo, A. Sasso, and E. Santamato, “Experimental and theoretical study of the transient rotation of isotropic transparent microparticles in astigmatic optical tweezers,” Opt. Commun. 230, 337–345 (2004).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004).
[CrossRef]

2003 (4)

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory behavior and enhancement of the surface plasmon linewidth in embedded noble metal nanoparticles,” Eur. Phys. J. D 24, 127–130 (2003).

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

2002 (4)

B. J. Soller and D. G. Hall, “Dynamic modifications to the plasmon resonance of a metallic nanoparticle coupled to a planar waveguide: beyond the point-dipole limit,” J. Opt. Soc. Am. B 19, 1195–1203 (2002).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65, 155427 (2002);

2001 (2)

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

1983 (1)

M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamical depolarization,” Optic Lett. 8, 581–583 (1983).
[CrossRef]

1982 (1)

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

1945 (1)

J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67, 351–357 (1945).
[CrossRef]

Aeschlimann, M.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Ahn, Y. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Ambrosio, A.

A. Ambrosio, B. Piccirillo, A. Sasso, and E. Santamato, “Experimental and theoretical study of the transient rotation of isotropic transparent microparticles in astigmatic optical tweezers,” Opt. Commun. 230, 337–345 (2004).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

Aussenegg, F. R.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Bilotsky, Y.

Y. Bilotsky, N. I. Grigorchuk, and P. M. Tomchuk, “Hot electrons and laser optoacoustics in metal nanoparticles,” Surf. Sci. 603, 3267–3274 (2009).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Coronado, E. A.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

Dahmen, C.

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7, 318–322 (2007).
[CrossRef]

Dereux, A.

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Ditlbacher, H.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Feldmann, J.

T. K. Sau, A. L. Rogach, F. Jáckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials 22, 1805–1825 (2010).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Funston, A.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

Gomez, D.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

Gordon, J. P.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

Grigorchuk, N. I.

N. I. Grigorchuk, “Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix,” Eur. Phys. Lett. 97, 45001 (2012).
[CrossRef]

N. I. Grigorchuk and P. M. Tomchuk, “Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect,” Phys. Rev. B 84, 085448 (2011).
[CrossRef]

N. I. Grigorchuk and P. M. Tomchuk, “Theory for absorption of ultrashort laser pulses by spheroidal metallic nanoparticles,” Phys. Rev. B 80, 155456 (2009).
[CrossRef]

Y. Bilotsky, N. I. Grigorchuk, and P. M. Tomchuk, “Hot electrons and laser optoacoustics in metal nanoparticles,” Surf. Sci. 603, 3267–3274 (2009).
[CrossRef]

P. M. Tomchuk and N. I. Grigorchuk, “Shape and size effects on the energy absorption by small metallic particles,” Phys. Rev. B 73, 155423 (2006).
[CrossRef]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Guyot-Sionnest, P.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79, 035418 (2009).
[CrossRef]

Hall, D. G.

Hartland, G. V.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

Hohng, S. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Hu, M.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

Jáckel, F.

T. K. Sau, A. L. Rogach, F. Jáckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials 22, 1805–1825 (2010).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 2001).

Jalabert, R. A.

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory behavior and enhancement of the surface plasmon linewidth in embedded noble metal nanoparticles,” Eur. Phys. J. D 24, 127–130 (2003).

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65, 155427 (2002);

Kasemo, B.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kim, D. S.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Kim, J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Kittel, Ch.

Ch. Kittel, Introduction to Solid State Physics (Wiley, 2005).

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Klar, T. A.

T. K. Sau, A. L. Rogach, F. Jáckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials 22, 1805–1825 (2010).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Krenn, J. R.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continous Media (Pergamon, 1986).

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[CrossRef]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A: Pure Appl. Opt. 8, S239–S249 (2006).
[CrossRef]

Li, D.

D. Li and Y. Xia, “Welding and patterning in a flash,” Nat. Mater. 3, 753–754 (2004).
[CrossRef]

Liao, P. F.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

Liebsch, A.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Lienau, C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continous Media (Pergamon, 1986).

Liu, M.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79, 035418 (2009).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Malyarchuk, V.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Meier, M.

M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamical depolarization,” Optic Lett. 8, 581–583 (1983).
[CrossRef]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

Mertens, H.

H. Mertens and A. Polman, “Strong luminescence quantum efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes,” J. Appl. Phys. 105, 044302 (2009).
[CrossRef]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A: Pure Appl. Opt. 8, S239–S249 (2006).
[CrossRef]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Molina, R. A.

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory behavior and enhancement of the surface plasmon linewidth in embedded noble metal nanoparticles,” Eur. Phys. J. D 24, 127–130 (2003).

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65, 155427 (2002);

Mulvaney, P.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Novo, C.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

Ohms, T.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Osborn, J. A.

J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67, 351–357 (1945).
[CrossRef]

Park, J. W.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Park, Q. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Pelton, M.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79, 035418 (2009).
[CrossRef]

Perez-Juste, J.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Petrova, H.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

Piccirillo, B.

A. Ambrosio, B. Piccirillo, A. Sasso, and E. Santamato, “Experimental and theoretical study of the transient rotation of isotropic transparent microparticles in astigmatic optical tweezers,” Opt. Commun. 230, 337–345 (2004).
[CrossRef]

Polman, A.

H. Mertens and A. Polman, “Strong luminescence quantum efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes,” J. Appl. Phys. 105, 044302 (2009).
[CrossRef]

Porath, R.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Reismann, M.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

Rogach, A. L.

T. K. Sau, A. L. Rogach, F. Jáckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials 22, 1805–1825 (2010).
[CrossRef]

Santamato, E.

A. Ambrosio, B. Piccirillo, A. Sasso, and E. Santamato, “Experimental and theoretical study of the transient rotation of isotropic transparent microparticles in astigmatic optical tweezers,” Opt. Commun. 230, 337–345 (2004).
[CrossRef]

Sasso, A.

A. Ambrosio, B. Piccirillo, A. Sasso, and E. Santamato, “Experimental and theoretical study of the transient rotation of isotropic transparent microparticles in astigmatic optical tweezers,” Opt. Commun. 230, 337–345 (2004).
[CrossRef]

Sau, T. K.

T. K. Sau, A. L. Rogach, F. Jáckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials 22, 1805–1825 (2010).
[CrossRef]

Scharte, M.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Schatz, G. C.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schmidt, B.

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7, 318–322 (2007).
[CrossRef]

Schröter, U.

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[CrossRef]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Soller, B. J.

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Staleva, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Tomchuk, P. M.

N. I. Grigorchuk and P. M. Tomchuk, “Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect,” Phys. Rev. B 84, 085448 (2011).
[CrossRef]

N. I. Grigorchuk and P. M. Tomchuk, “Theory for absorption of ultrashort laser pulses by spheroidal metallic nanoparticles,” Phys. Rev. B 80, 155456 (2009).
[CrossRef]

Y. Bilotsky, N. I. Grigorchuk, and P. M. Tomchuk, “Hot electrons and laser optoacoustics in metal nanoparticles,” Surf. Sci. 603, 3267–3274 (2009).
[CrossRef]

P. M. Tomchuk and N. I. Grigorchuk, “Shape and size effects on the energy absorption by small metallic particles,” Phys. Rev. B 73, 155423 (2006).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

von Plessen, G.

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7, 318–322 (2007).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Wang, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

Weinmann, D.

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory behavior and enhancement of the surface plasmon linewidth in embedded noble metal nanoparticles,” Eur. Phys. J. D 24, 127–130 (2003).

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65, 155427 (2002);

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Wokaun, A.

M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamical depolarization,” Optic Lett. 8, 581–583 (1983).
[CrossRef]

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

Xia, Y.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

D. Li and Y. Xia, “Welding and patterning in a flash,” Nat. Mater. 3, 753–754 (2004).
[CrossRef]

Yee, K. J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Yoon, Y. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Zhang, X.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Zhang, Z.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[CrossRef]

Zou, S.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

Advanced Materials (1)

T. K. Sau, A. L. Rogach, F. Jáckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials 22, 1805–1825 (2010).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004).
[CrossRef]

Appl. Phys. B (1)

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Eur. Phys. J. D (1)

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory behavior and enhancement of the surface plasmon linewidth in embedded noble metal nanoparticles,” Eur. Phys. J. D 24, 127–130 (2003).

Eur. Phys. Lett. (1)

N. I. Grigorchuk, “Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix,” Eur. Phys. Lett. 97, 45001 (2012).
[CrossRef]

J. Appl. Phys. (1)

H. Mertens and A. Polman, “Strong luminescence quantum efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes,” J. Appl. Phys. 105, 044302 (2009).
[CrossRef]

J. Chem. Phys. (2)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

J. Mater. Chem. (1)

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A: Pure Appl. Opt. 8, S239–S249 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Nano Lett. (3)

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7, 318–322 (2007).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[CrossRef]

Nat. Mater. (1)

D. Li and Y. Xia, “Welding and patterning in a flash,” Nat. Mater. 3, 753–754 (2004).
[CrossRef]

Opt. Commun. (1)

A. Ambrosio, B. Piccirillo, A. Sasso, and E. Santamato, “Experimental and theoretical study of the transient rotation of isotropic transparent microparticles in astigmatic optical tweezers,” Opt. Commun. 230, 337–345 (2004).
[CrossRef]

Optic Lett. (1)

M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamical depolarization,” Optic Lett. 8, 581–583 (1983).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[CrossRef]

Phys. Rev. (1)

J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67, 351–357 (1945).
[CrossRef]

Phys. Rev. B (6)

N. I. Grigorchuk and P. M. Tomchuk, “Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect,” Phys. Rev. B 84, 085448 (2011).
[CrossRef]

N. I. Grigorchuk and P. M. Tomchuk, “Theory for absorption of ultrashort laser pulses by spheroidal metallic nanoparticles,” Phys. Rev. B 80, 155456 (2009).
[CrossRef]

P. M. Tomchuk and N. I. Grigorchuk, “Shape and size effects on the energy absorption by small metallic particles,” Phys. Rev. B 73, 155423 (2006).
[CrossRef]

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79, 035418 (2009).
[CrossRef]

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65, 155427 (2002);

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Phys. Rev. Lett. (4)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Surf. Sci. (1)

Y. Bilotsky, N. I. Grigorchuk, and P. M. Tomchuk, “Hot electrons and laser optoacoustics in metal nanoparticles,” Surf. Sci. 603, 3267–3274 (2009).
[CrossRef]

Other (8)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continous Media (Pergamon, 1986).

J. D. Jackson, Classical Electrodynamics (Wiley, 2001).

Ch. Kittel, Introduction to Solid State Physics (Wiley, 2005).

For prolate spheroid (a>b=c): R∥≡a and R⊥≡b, but for oblate one (a=b>c): R∥≡b and R⊥≡a.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

The latter mechanism requires a threshold energy Eib of about 2.38 eV in the Au, whereas the energy of surface plasmon in the Au is 2.29  eV5. In the Ag Esp≈3  eV and Eib≈4  eV5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Radiative linewidth of the SPR components (longitudinal and transverse ) versus the medium refractive index for a prolate Au nanoparticles with the axes ratiopa R/R=0.618. The dashed curve corresponds to the spherical Au particle with the radius R=200Å. The inset shows the same dependence for two spherical Na nanoparticles with the radii of 180 and 200 Å (solid curves). The dashed curves represent the Γ(n) in the case, when the oscillation terms in Eq. (30) are neglected.

Fig. 2.
Fig. 2.

Radiative linewidth of SPR versus radius of spherical Au nanoparticle (in units of the Bohr radius aB=0.53Å) embedded in the water n1.33 or in the medium with refractive index n=9. The dashed lines represent the Γ(R) in the case, when the oscillation terms in Eq. (30) are neglected. The inset shows the same dependence for Na nanoparticle.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

Γs=AυFleff,
Γrad=2kV,
ϵ(ω)=ϵinter(ω)+(1ωpl2ω2+(Γb+Γs+Γrad)2),ϵ(ω)=ωpl2ωΓb+Γs+Γradω2+(Γb+Γs+Γrad)2,
Ej(0)=Ej,in[1+Lj(ϵ/ϵm1)],
Frad(t)=2e3c3ϵm[1+L(ϵ/ϵm1)]d(t),
Γrad=emIm[Frad(t)d˙(t)]N,
Γj,rad=23e2ω2mc3NϵmIm[1+Lj(ϵjj/ϵm1)].
ϵm(ω)=constϵm,ϵm(ω)=0,
Γj,rad(ω)=23e2ω2mc3NLjϵjj(ω)ϵm.
ϵjj(ω)=4πσjj(ω)ω,
Γj,rad(ω)=8π3e2ωmc3NLjσjj(ω)ϵm.
σjj(ω)=ωVϵm|1+Lj(ϵ/ϵm1)|2Imαjj(ω).
ω=ωsp=ωplε+(1/Lj1)n2.
σ()(ω)=9ωpl216πRe[1νiω0π/2(sinθcos2θ12sin3θ)Ψ(θ)dθ]υ=υF,
Ψ(q)=Φ(q)4q2(1+1q)eq,
Φ(q)=432q+4q3,q=2Rυ(νiω).
υ=υR(sinθR)2+(cosθR)2υ(θ),
q(θ)=2υFνiωcos2θR2+sin2θR2.
νs=υF2R.
σ()(ω)=932π(ωplω)2υFR(η(ep)ρ(ep)),
η(x){π/8+3πx2/16,for a prolate sheroidx/2+1/(4x),for an oblate spheroid,ρ(x){3π/16+πx2/32,for a prolate spheroidx4+1+4ln2x8x,for an oblate spheroid.
Γ(),rad,sp=34e2ωpl2mωc3NυFRϵmL()(η(ep)ρ(ep)),
N=43πRR2ne=m3e2ωpl2RR2,
Γ(),rad,sp=ωpl34c3υFRRL()2n2+ϵn2(η(ep)ρ(ep)).
L(x)x2[ln(2xx4)1],L(x)=[1L(x)]/2.
Γrad,sp=118(ωplc)3υFR22n2+εn2.
Γrad,()=8π9n(ωplc)3RR2L()σ()ϵ+(1/L()1)n2.
σsph=3ωpl216πRe(Ψ(q)νiω),
σsph38πνsωpl2ω2[12νsωsinωνs+2νs2ω2(1cosωνs)].
Γsphωpl9nξ(Rωplc)3[12ξsinξ+2ξ2(1cosξ)],
ξξ(n,R)=2RωplυF2n2+ε.
Γj,rad=σscaσabsΓj,nonrad,
Γj,nonrad(ω)=4πLjϵm+Lj(1ϵm)σjj(ω),
Γj,nonrad(ω)=4πLjσjj(ω).
RHF(32)3/4(cυF)1/4cωωpl.
RLFcωpl6cυFϵm.

Metrics