Abstract

We demonstrate a scalar Rb87 optical magnetometer that retains magnetic-field sensitivities below 10pT/Hz over 3 dB bandwidths of 10 kHz in an ambient field Bo=11.4μT and using a measurement volume of 1mm3. The magnetometer operates at high atomic densities where both the sensitivity and the bandwidth are limited by spin-exchange collisions between the alkali atoms. By operating in this regime, our measurements show that the bandwidth of the magnetometer can be increased without a significant degradation in its sensitivity.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
    [CrossRef]
  2. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
    [CrossRef]
  3. H. H. Nelson and J. R. McDonald, “Multisensor towed array detection system for UXO detection,” IEEE Trans. Geosci. Remote Sens. 39, 1139–1145 (2001).
    [CrossRef]
  4. S. D. Billings, “Discrimination and classification of buried unexploded ordnance using magnetometry,” IEEE Trans. Geosci. Remote Sens. 42, 1241–1251 (2004).
    [CrossRef]
  5. S. Billings, F. Shubitidze, L. Pasion, L. Beran, and J. Foley, “Requirements for unexploded ordnance detection and discrimination in the marine environment using magnetic and electromagnetic sensors,” in Proceedings of OCEANS 2010 IEEE-Sidney (IEEE, 2010), p. 18.
  6. P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103–4 (2005).
    [CrossRef]
  7. J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106–7 (2006).
    [CrossRef]
  8. V. Shah, G. Vasilakis, and M. V. Romalis, “High bandwidth atomic magnetometry with continuous quantum nondemolition measurements,” Phys. Rev. Lett. 104, 013601 (2010).
    [CrossRef]
  9. W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280 (1961).
    [CrossRef]
  10. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
    [CrossRef]
  11. P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007).
    [CrossRef]
  12. J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated photonic magnetometer,” in Proceedings of the IEEE Sensors Conference (IEEE, 2008), p. 344.
  13. S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
    [CrossRef]
  14. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with cs vapor,” Phys. Rev. A 77, 033408 (2008).
    [CrossRef]
  15. S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. thesis (Princeton University, 2008).
  16. W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
    [CrossRef]
  17. V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1, 649–652 (2007).
    [CrossRef]
  18. J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” J. Opt. Soc. Am. B 15, 1177–1186 (1998).
    [CrossRef]
  19. R. Jiménez-Martínez, S. Knappe, W. C. Griffith, and J. Kitching, “Conversion of laser-frequency noise to optical-rotation noise in cesium vapor,” Opt. Lett. 34, 2519–2521 (2009).
    [CrossRef]
  20. I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
    [CrossRef]
  21. W. C. Griffith, S. Knappe, and J. Kitching, “Femtotesla atomic magnetometry in a microfabricated vapor cell,” Opt. Express 18, 27167–27172 (2010).
    [CrossRef]
  22. M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105, 243001 (2010).
    [CrossRef]
  23. D. Drung, H. Matz, and H. Koch, “A 5-MHz bandwidth SQUID magnetometer with additional positive feedback,” Rev. Sci. Instrum. 66, 3008–3015 (1995).
    [CrossRef]
  24. C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97, 243703 (2010).
    [CrossRef]
  25. D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics: An Exploration Through Problems and Solutions (Oxford University, 2004).

2010 (5)

V. Shah, G. Vasilakis, and M. V. Romalis, “High bandwidth atomic magnetometry with continuous quantum nondemolition measurements,” Phys. Rev. Lett. 104, 013601 (2010).
[CrossRef]

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[CrossRef]

W. C. Griffith, S. Knappe, and J. Kitching, “Femtotesla atomic magnetometry in a microfabricated vapor cell,” Opt. Express 18, 27167–27172 (2010).
[CrossRef]

M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105, 243001 (2010).
[CrossRef]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97, 243703 (2010).
[CrossRef]

2009 (1)

2008 (1)

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

2007 (3)

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1, 649–652 (2007).
[CrossRef]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[CrossRef]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007).
[CrossRef]

2006 (1)

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106–7 (2006).
[CrossRef]

2005 (2)

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103–4 (2005).
[CrossRef]

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[CrossRef]

2004 (2)

S. D. Billings, “Discrimination and classification of buried unexploded ordnance using magnetometry,” IEEE Trans. Geosci. Remote Sens. 42, 1241–1251 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

2002 (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

2001 (1)

H. H. Nelson and J. R. McDonald, “Multisensor towed array detection system for UXO detection,” IEEE Trans. Geosci. Remote Sens. 39, 1139–1145 (2001).
[CrossRef]

1998 (1)

1995 (1)

D. Drung, H. Matz, and H. Koch, “A 5-MHz bandwidth SQUID magnetometer with additional positive feedback,” Rev. Sci. Instrum. 66, 3008–3015 (1995).
[CrossRef]

1977 (1)

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
[CrossRef]

1961 (1)

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280 (1961).
[CrossRef]

Acosta, V. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

Allred, J. C.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

Bell, W. E.

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280 (1961).
[CrossRef]

Beran, L.

S. Billings, F. Shubitidze, L. Pasion, L. Beran, and J. Foley, “Requirements for unexploded ordnance detection and discrimination in the marine environment using magnetic and electromagnetic sensors,” in Proceedings of OCEANS 2010 IEEE-Sidney (IEEE, 2010), p. 18.

Billings, S.

S. Billings, F. Shubitidze, L. Pasion, L. Beran, and J. Foley, “Requirements for unexploded ordnance detection and discrimination in the marine environment using magnetic and electromagnetic sensors,” in Proceedings of OCEANS 2010 IEEE-Sidney (IEEE, 2010), p. 18.

Billings, S. D.

S. D. Billings, “Discrimination and classification of buried unexploded ordnance using magnetometry,” IEEE Trans. Geosci. Remote Sens. 42, 1241–1251 (2004).
[CrossRef]

Bloom, A. L.

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280 (1961).
[CrossRef]

Budker, D.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[CrossRef]

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106–7 (2006).
[CrossRef]

D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics: An Exploration Through Problems and Solutions (Oxford University, 2004).

Camparo, J. C.

Corsini, E.

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106–7 (2006).
[CrossRef]

DeMille, D. P.

D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics: An Exploration Through Problems and Solutions (Oxford University, 2004).

Drung, D.

D. Drung, H. Matz, and H. Koch, “A 5-MHz bandwidth SQUID magnetometer with additional positive feedback,” Rev. Sci. Instrum. 66, 3008–3015 (1995).
[CrossRef]

Foley, J.

S. Billings, F. Shubitidze, L. Pasion, L. Beran, and J. Foley, “Requirements for unexploded ordnance detection and discrimination in the marine environment using magnetic and electromagnetic sensors,” in Proceedings of OCEANS 2010 IEEE-Sidney (IEEE, 2010), p. 18.

Gerginov, V.

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated photonic magnetometer,” in Proceedings of the IEEE Sensors Conference (IEEE, 2008), p. 344.

Griffith, W. C.

Happer, W.

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
[CrossRef]

Higbie, J. M.

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106–7 (2006).
[CrossRef]

Hollberg, L.

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103–4 (2005).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

Jiménez-Martínez, R.

Johnson, C.

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97, 243703 (2010).
[CrossRef]

Kimball, D. F.

D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics: An Exploration Through Problems and Solutions (Oxford University, 2004).

Kitching, J.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[CrossRef]

W. C. Griffith, S. Knappe, and J. Kitching, “Femtotesla atomic magnetometry in a microfabricated vapor cell,” Opt. Express 18, 27167–27172 (2010).
[CrossRef]

R. Jiménez-Martínez, S. Knappe, W. C. Griffith, and J. Kitching, “Conversion of laser-frequency noise to optical-rotation noise in cesium vapor,” Opt. Lett. 34, 2519–2521 (2009).
[CrossRef]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007).
[CrossRef]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1, 649–652 (2007).
[CrossRef]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103–4 (2005).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated photonic magnetometer,” in Proceedings of the IEEE Sensors Conference (IEEE, 2008), p. 344.

Knappe, S.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[CrossRef]

W. C. Griffith, S. Knappe, and J. Kitching, “Femtotesla atomic magnetometry in a microfabricated vapor cell,” Opt. Express 18, 27167–27172 (2010).
[CrossRef]

R. Jiménez-Martínez, S. Knappe, W. C. Griffith, and J. Kitching, “Conversion of laser-frequency noise to optical-rotation noise in cesium vapor,” Opt. Lett. 34, 2519–2521 (2009).
[CrossRef]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1, 649–652 (2007).
[CrossRef]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated photonic magnetometer,” in Proceedings of the IEEE Sensors Conference (IEEE, 2008), p. 344.

Koch, H.

D. Drung, H. Matz, and H. Koch, “A 5-MHz bandwidth SQUID magnetometer with additional positive feedback,” Rev. Sci. Instrum. 66, 3008–3015 (1995).
[CrossRef]

Kornack, T. W.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

Kosch, O.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[CrossRef]

Ledbetter, M. P.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

Liew, L.-A.

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

Lindseth, B.

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007).
[CrossRef]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

Matz, H.

D. Drung, H. Matz, and H. Koch, “A 5-MHz bandwidth SQUID magnetometer with additional positive feedback,” Rev. Sci. Instrum. 66, 3008–3015 (1995).
[CrossRef]

McDonald, J. R.

H. H. Nelson and J. R. McDonald, “Multisensor towed array detection system for UXO detection,” IEEE Trans. Geosci. Remote Sens. 39, 1139–1145 (2001).
[CrossRef]

Moreland, J.

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

Nelson, H. H.

H. H. Nelson and J. R. McDonald, “Multisensor towed array detection system for UXO detection,” IEEE Trans. Geosci. Remote Sens. 39, 1139–1145 (2001).
[CrossRef]

Pasion, L.

S. Billings, F. Shubitidze, L. Pasion, L. Beran, and J. Foley, “Requirements for unexploded ordnance detection and discrimination in the marine environment using magnetic and electromagnetic sensors,” in Proceedings of OCEANS 2010 IEEE-Sidney (IEEE, 2010), p. 18.

Preusser, J.

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated photonic magnetometer,” in Proceedings of the IEEE Sensors Conference (IEEE, 2008), p. 344.

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[CrossRef]

Romalis, M. V.

V. Shah, G. Vasilakis, and M. V. Romalis, “High bandwidth atomic magnetometry with continuous quantum nondemolition measurements,” Phys. Rev. Lett. 104, 013601 (2010).
[CrossRef]

M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105, 243001 (2010).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

Sander, T. H.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[CrossRef]

Sauer, K. L.

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[CrossRef]

Savukov, I. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[CrossRef]

Schwindt, P. D. D.

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97, 243703 (2010).
[CrossRef]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1, 649–652 (2007).
[CrossRef]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007).
[CrossRef]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103–4 (2005).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

Seltzer, S. J.

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[CrossRef]

S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. thesis (Princeton University, 2008).

Shah, V.

V. Shah, G. Vasilakis, and M. V. Romalis, “High bandwidth atomic magnetometry with continuous quantum nondemolition measurements,” Phys. Rev. Lett. 104, 013601 (2010).
[CrossRef]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007).
[CrossRef]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1, 649–652 (2007).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

Shubitidze, F.

S. Billings, F. Shubitidze, L. Pasion, L. Beran, and J. Foley, “Requirements for unexploded ordnance detection and discrimination in the marine environment using magnetic and electromagnetic sensors,” in Proceedings of OCEANS 2010 IEEE-Sidney (IEEE, 2010), p. 18.

Tam, A. C.

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
[CrossRef]

Trahms, L.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[CrossRef]

Vasilakis, G.

V. Shah, G. Vasilakis, and M. V. Romalis, “High bandwidth atomic magnetometry with continuous quantum nondemolition measurements,” Phys. Rev. Lett. 104, 013601 (2010).
[CrossRef]

Weisend, M.

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97, 243703 (2010).
[CrossRef]

Wiekhorst, F.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007).
[CrossRef]

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[CrossRef]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97, 243703 (2010).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

H. H. Nelson and J. R. McDonald, “Multisensor towed array detection system for UXO detection,” IEEE Trans. Geosci. Remote Sens. 39, 1139–1145 (2001).
[CrossRef]

S. D. Billings, “Discrimination and classification of buried unexploded ordnance using magnetometry,” IEEE Trans. Geosci. Remote Sens. 42, 1241–1251 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1, 649–652 (2007).
[CrossRef]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

Phys. Rev. Lett. (5)

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

V. Shah, G. Vasilakis, and M. V. Romalis, “High bandwidth atomic magnetometry with continuous quantum nondemolition measurements,” Phys. Rev. Lett. 104, 013601 (2010).
[CrossRef]

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280 (1961).
[CrossRef]

M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105, 243001 (2010).
[CrossRef]

Rev. Sci. Instrum. (3)

D. Drung, H. Matz, and H. Koch, “A 5-MHz bandwidth SQUID magnetometer with additional positive feedback,” Rev. Sci. Instrum. 66, 3008–3015 (1995).
[CrossRef]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103–4 (2005).
[CrossRef]

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106–7 (2006).
[CrossRef]

Other (4)

S. Billings, F. Shubitidze, L. Pasion, L. Beran, and J. Foley, “Requirements for unexploded ordnance detection and discrimination in the marine environment using magnetic and electromagnetic sensors,” in Proceedings of OCEANS 2010 IEEE-Sidney (IEEE, 2010), p. 18.

S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. thesis (Princeton University, 2008).

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated photonic magnetometer,” in Proceedings of the IEEE Sensors Conference (IEEE, 2008), p. 344.

D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics: An Exploration Through Problems and Solutions (Oxford University, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Basic configuration of the Bell–Bloom magnetometer. A circularly polarized laser beam pumps the atomic ensemble, which acquires a macroscopic magnetization (M). In the presence of a magnetic field Bo, M precesses about the field at Larmor frequency. Readout of the precession frequency is implemented by OR detection of a linearly polarized laser beam. Continuous readout is achieved by modulating the amplitude of the pumping light.

Fig. 2.
Fig. 2.

Experimental setup. PBS, polarizing beam-splitter; HWP, half-wave plate; QWP, quarter-wave plate; and FFT, spectrum analyzer.

Fig. 3.
Fig. 3.

(a) Noise spectra of the lock-in signal converted to units of magnetic field. The ambient field is 11.4 μT, ODo16, and the magnetic linewidth (HWHM) is 11 kHz. Solid and dashed curves correspond to the measured noise 10pT/Hz and photon shot noise 4pT/Hz, respectively. (b) Frequency response of the magnetometer; solid curves are used to guide the eye. Inset: magnetic resonances at very low pumping light levels at the given ODo.

Fig. 4.
Fig. 4.

(a) Magnetic resonance width (HWHM) and measured S/N as a function of pumping power. (b) Magnetic field sensitivity as a function of pumping power at ODo=0.13. Solid lines in (a) serve to guide the eye. The dashed line in (b) corresponds to the estimated photon shot-noise sensitivity using Eq. (6).

Fig. 5.
Fig. 5.

(a) Magnetic linewidth, (b) OR angle, and (c) noise as a function of on-resonance optical depth. In (a), the hollow and solid symbols correspond to the width (HWHM) of the resonance line and extrapolated zero-light level, respectively, whereas the solid line is the relaxation contribution from spin-exchange collisions. In (b) and (c) the solid lines correspond to the expected OR angle and shot noise according to Eqs. (4) and (5), respectively. See text for details.

Fig. 6.
Fig. 6.

Magnetic-field sensitivity as a function of on-resonance optical depth. See text for details.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δB=1γ1T2S/N,
RSE=nσSEv¯,
ΔνHWHM=12πΓ2=12π(RSEqSE+Γo+(Rp+Rpr)q),
ϕOR=14ODoMoΓpΓ2(x1+x2),
δϕOR=ODo2ηRprnV(1+x2),
δBpsn=2Γ22γΓpMo2ηODonVRprx1(1+x2)1/2.
SOR=Itsin(2ϕOR),
ϕOR=12σonlMx(x1+x2),
Mx=MoΓp2Γ2cos(wt).
δϕOR=12ηΦprt,
R=ΦAσo(11+x2),

Metrics