Abstract

The inscription of customized fiber Bragg structures under acoustic excitation is proposed and demonstrated. By setting the proper acoustic excitation function, the desired spectrum of the grating can be achieved. In this paper, the effect of applying a burst acoustic wave during the process of Bragg grating inscription using the direct writing method through a phase mask is investigated. Among all the characteristics that can be changed due to a periodic defect insertion in the uniform Bragg structure, the control of phase is used to demonstrate this assertion. The results of numerical simulations are shown to be in excellent agreement with experiments. It can be further extended to generate multiple phase shifts in optical fiber and/or waveguides, if the defects are inserted at different positions, as is shown.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276(1997).
    [CrossRef]
  2. J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
    [CrossRef]
  3. G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
    [CrossRef]
  4. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
    [CrossRef]
  5. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10  Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
    [CrossRef]
  6. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-chip optical code division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
    [CrossRef]
  7. W. H. Loh, F. Q. Zhou, and J. J. Pan, “Novel designs for sampled grating based multiplexers-demultiplexers,” Opt. Lett. 24, 1457–1459 (1999).
    [CrossRef]
  8. J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344–1345 (1994).
    [CrossRef]
  9. M. Li, X. Chen, T. Fuji, Y. Kudo, H. Li, and Y. Painchaud, “Multi-wavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34, 1717–1719 (2009).
  10. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long period superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
    [CrossRef]
  11. R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Appl. Phys. Lett. 97, 041101 (2010).
    [CrossRef]
  12. R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011).
    [CrossRef]
  13. J. Canning, H.-J. Deyerl, and M. Kristensen, “Precision phase-shifting applied to fibre Bragg gratings,” Opt. Commun. 244, 187–191 (2005).
    [CrossRef]
  14. M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17, 552–554 (2005).
    [CrossRef]
  15. R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283, 1296–1302 (2010).
    [CrossRef]
  16. F. Ghiringhelli, C. Alegria, and M. N. Zervas, “Effect of phase shift perturbations and complex local time delay in fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWA3.
  17. J. Y. Lee, H.-W. Lee, and J. W. Hahn, “Complex traversal time for optical pulse transmission in a Fabry–Perot cavity,” J. Opt. Soc. Am. B 17, 401–406 (2000).
    [CrossRef]
  18. C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Opt. Commun. 284, 1228–1231(2011).
    [CrossRef]
  19. R. A. Oliveira, P. T. Neves, J. T. Pereira, and A. A. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods,” Opt. Commun. 281, 4899–4905 (2008).
    [CrossRef]
  20. J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
    [CrossRef]

2011 (2)

R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011).
[CrossRef]

C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Opt. Commun. 284, 1228–1231(2011).
[CrossRef]

2010 (4)

R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Appl. Phys. Lett. 97, 041101 (2010).
[CrossRef]

R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283, 1296–1302 (2010).
[CrossRef]

J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
[CrossRef]

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

2009 (1)

2008 (1)

R. A. Oliveira, P. T. Neves, J. T. Pereira, and A. A. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods,” Opt. Commun. 281, 4899–4905 (2008).
[CrossRef]

2005 (2)

J. Canning, H.-J. Deyerl, and M. Kristensen, “Precision phase-shifting applied to fibre Bragg gratings,” Opt. Commun. 244, 187–191 (2005).
[CrossRef]

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17, 552–554 (2005).
[CrossRef]

2001 (2)

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10  Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-chip optical code division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[CrossRef]

2000 (1)

1999 (1)

1997 (1)

K. O. Hill, and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276(1997).
[CrossRef]

1994 (4)

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344–1345 (1994).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long period superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

Alegria, C.

F. Ghiringhelli, C. Alegria, and M. N. Zervas, “Effect of phase shift perturbations and complex local time delay in fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWA3.

Andrés, M. V.

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
[CrossRef]

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17, 552–554 (2005).
[CrossRef]

Archambault, J. L.

Canning, J.

R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011).
[CrossRef]

C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Opt. Commun. 284, 1228–1231(2011).
[CrossRef]

R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Appl. Phys. Lett. 97, 041101 (2010).
[CrossRef]

R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283, 1296–1302 (2010).
[CrossRef]

J. Canning, H.-J. Deyerl, and M. Kristensen, “Precision phase-shifting applied to fibre Bragg gratings,” Opt. Commun. 244, 187–191 (2005).
[CrossRef]

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344–1345 (1994).
[CrossRef]

Chen, X.

Cook, K.

R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011).
[CrossRef]

R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Appl. Phys. Lett. 97, 041101 (2010).
[CrossRef]

Cruz, J. L.

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
[CrossRef]

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17, 552–554 (2005).
[CrossRef]

Delgado-Pinar, M.

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17, 552–554 (2005).
[CrossRef]

Deyerl, H.-J.

J. Canning, H.-J. Deyerl, and M. Kristensen, “Precision phase-shifting applied to fibre Bragg gratings,” Opt. Commun. 244, 187–191 (2005).
[CrossRef]

Díez, A.

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17, 552–554 (2005).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long period superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

Fuji, T.

Ghiringhelli, F.

F. Ghiringhelli, C. Alegria, and M. N. Zervas, “Effect of phase shift perturbations and complex local time delay in fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWA3.

Hahn, J. W.

Hill, K. O.

K. O. Hill, and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276(1997).
[CrossRef]

Ibsen, M.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10  Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-chip optical code division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[CrossRef]

Kringlebotn, J. T.

Kristensen, M.

J. Canning, H.-J. Deyerl, and M. Kristensen, “Precision phase-shifting applied to fibre Bragg gratings,” Opt. Commun. 244, 187–191 (2005).
[CrossRef]

Krug, P. A.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long period superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

Kudo, Y.

Lee, H.-W.

Lee, J. Y.

Li, H.

Li, M.

Loh, W. H.

Marques, C. A. F.

C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Opt. Commun. 284, 1228–1231(2011).
[CrossRef]

R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011).
[CrossRef]

Martí, J.

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
[CrossRef]

Meltz, G.

K. O. Hill, and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276(1997).
[CrossRef]

Mora, J.

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17, 552–554 (2005).
[CrossRef]

Neves, P. T.

R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283, 1296–1302 (2010).
[CrossRef]

R. A. Oliveira, P. T. Neves, J. T. Pereira, and A. A. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods,” Opt. Commun. 281, 4899–4905 (2008).
[CrossRef]

Nogueira, R. N.

C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Opt. Commun. 284, 1228–1231(2011).
[CrossRef]

R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011).
[CrossRef]

Oliveira, R. A.

R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011).
[CrossRef]

C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Opt. Commun. 284, 1228–1231(2011).
[CrossRef]

R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Appl. Phys. Lett. 97, 041101 (2010).
[CrossRef]

R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283, 1296–1302 (2010).
[CrossRef]

R. A. Oliveira, P. T. Neves, J. T. Pereira, and A. A. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods,” Opt. Commun. 281, 4899–4905 (2008).
[CrossRef]

Ouellete, F.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long period superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

Painchaud, Y.

Palací, J.

J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
[CrossRef]

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Pan, J. J.

Payne, D. N.

Pereira, J. T.

R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283, 1296–1302 (2010).
[CrossRef]

R. A. Oliveira, P. T. Neves, J. T. Pereira, and A. A. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods,” Opt. Commun. 281, 4899–4905 (2008).
[CrossRef]

Pérez-Millán, P.

J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
[CrossRef]

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Petropoulos, P.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10  Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-chip optical code division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[CrossRef]

Pohl, A.

R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283, 1296–1302 (2010).
[CrossRef]

Pohl, A. A. P.

C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Opt. Commun. 284, 1228–1231(2011).
[CrossRef]

R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011).
[CrossRef]

R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Appl. Phys. Lett. 97, 041101 (2010).
[CrossRef]

R. A. Oliveira, P. T. Neves, J. T. Pereira, and A. A. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods,” Opt. Commun. 281, 4899–4905 (2008).
[CrossRef]

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long period superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

Reekie, L.

Richardson, D. J.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-chip optical code division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10  Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[CrossRef]

Sceats, M. G.

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344–1345 (1994).
[CrossRef]

Teh, P. C.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10  Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-chip optical code division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[CrossRef]

Vidal, B.

J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
[CrossRef]

Villanueva, G. E.

J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
[CrossRef]

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Zervas, M. N.

F. Ghiringhelli, C. Alegria, and M. N. Zervas, “Effect of phase shift perturbations and complex local time delay in fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWA3.

Zhou, F. Q.

Appl. Phys. Lett. (2)

R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Appl. Phys. Lett. 97, 041101 (2010).
[CrossRef]

R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011).
[CrossRef]

Electron. Lett. (2)

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344–1345 (1994).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long period superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10  Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[CrossRef]

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17, 552–554 (2005).
[CrossRef]

J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283, 1296–1302 (2010).
[CrossRef]

C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Opt. Commun. 284, 1228–1231(2011).
[CrossRef]

R. A. Oliveira, P. T. Neves, J. T. Pereira, and A. A. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods,” Opt. Commun. 281, 4899–4905 (2008).
[CrossRef]

J. Canning, H.-J. Deyerl, and M. Kristensen, “Precision phase-shifting applied to fibre Bragg gratings,” Opt. Commun. 244, 187–191 (2005).
[CrossRef]

Opt. Lett. (3)

Other (1)

F. Ghiringhelli, C. Alegria, and M. N. Zervas, “Effect of phase shift perturbations and complex local time delay in fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWA3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the grating writing setup.

Fig. 2.
Fig. 2.

Time diagram for the burst characteristics.

Fig. 3.
Fig. 3.

Simulated (dotted curves) and experimental (solid curves) reflected spectra when no defect is introduced in the Bragg structure.

Fig. 4.
Fig. 4.

(a) Simulated (dotted curves) and experimental (solid curves) reflected spectra when a defect is introduced in the Bragg structure creating a phase shift of φ=π. (b) After the recording process, when AW is turned on, the phase shift can be suppressed, depending on the PZT loads. The FBGs were inscribed by fixing the acoustic frequency (f=87kHz).

Fig. 5.
Fig. 5.

Reflected spectra when the defects of (a) φ=π/2 and (b) φ=3π/2 are inserted in the structure following the AW burst characteristics shown in Figs. 2(b) and 2(c), respectively.

Fig. 6.
Fig. 6.

(a) Simulated (dotted curves) and experimental (solid curves) reflected spectra when a defect is introduced in the Bragg structure creating a phase shift of φ=4π/5. (b) Reflected spectrum when the burst is set on continuous mode, inducing a phase shift of φ=2π. (c) Optical spectra when multiple phase shifts are introduced in the fiber. (d) Time diagram for produce multiple phase shifts. The positions of two defects inserted in the fiber are l=LFBG/4 and l=3LFBG/4.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t(z)=t0ejdφNT(z)andr(z)=r0ejdφNR(z)

Metrics