Abstract

An end-to-end ovoid metallic nanoparticle pair is introduced, and its resonant wavelength can be determined by the particle geometry, particle separation, outside medium, and metallic material. The resonant peak shifts as a function of particle separation under different adjacent ends’ aspect ratios obey a universal scale after a normalization process. The scaled peak shifts are exponentially fitted, and the two fitting coefficients are obtained separately for the nanoparticle pair made of silver, gold, and aluminum immersed in several media. Equations are found in which the fitting coefficients can be derived from the medium and metallic refractive index. These equations are used to predict the resonant wavelength of the nanoparticle pair made of gallium in various media.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
    [CrossRef]
  2. P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012).
    [CrossRef]
  3. H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984).
    [CrossRef]
  4. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  5. L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
    [CrossRef]
  6. P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2, 173–183 (2007).
    [CrossRef]
  7. K. T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4, 79–93 (2009).
    [CrossRef]
  8. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18, 165–172 (2010).
    [CrossRef]
  9. J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26, 2370–2376 (2009).
    [CrossRef]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef]
  11. J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
    [CrossRef]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef]
  13. D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
    [CrossRef]
  14. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant Plasmon modes,” Opt. Express 19, 6450–6461 (2011).
    [CrossRef]
  15. N. L. Rosi and C. A. Mirkin, “Nanostuctures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
    [CrossRef]
  16. M. Dridi and A. Vial, “Improved description of the plasmon resonance wavelength shift in metallic nanoparticle pair,” Plasmonics 6, 637–641 (2011).
    [CrossRef]
  17. C. Tabor, D. V. Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3, 3670–3678 (2009).
    [CrossRef]
  18. F. M. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimmers,” Nano Lett. 10, 1787–1792 (2010).
    [CrossRef]
  19. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [CrossRef]
  20. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express 14, 9988–9999 (2006).
    [CrossRef]
  21. O. Peña-Rodríguez, U. Pal, V. Rodríguez-Iglesias, L. Rodríguez-Fernández, and A. Oliver, “Configuring Au and Ag nanorods for sensing applications,” J. Opt. Soc. Am. B 28, 714–720 (2011).
    [CrossRef]
  22. P. K. Jain and M. A. EI-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7, 2854–2854 (2007).
    [CrossRef]
  23. O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008).
    [CrossRef]
  24. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
    [CrossRef]
  25. R. Near, C. Tabor, J. S. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,” Nano Lett. 12, 2158–2164 (2012).
    [CrossRef]
  26. T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7, 557–564 (2007).
    [CrossRef]
  27. E. Simsek, “On the surface plasmon resonance modes of metal nanoparticle chains and arrays,” Plasmonics 4, 223–230 (2009).
    [CrossRef]
  28. A. M. Funston, C. Novo, Tim. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
    [CrossRef]
  29. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
    [CrossRef]
  30. L. Bigot, H. El Hamzaoui, A. Le Rouge, G. Bouwmans, F. Chassagneux, B. Capoen, and M. Bouazaoui, “Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber,” Opt. Express 19, 19061–19066 (2011).
    [CrossRef]
  31. N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
    [CrossRef]
  32. C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nanoparticles,” J. Opt. Soc. Am. A 21, 1761–1768 (2004).
    [CrossRef]
  33. A. Centeno, F. Xie, and N. Alford, “.Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles,” J. Opt. Soc. Am. B 28, 325–330 (2011).
    [CrossRef]
  34. Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104, 083107 (2008).
    [CrossRef]
  35. P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
    [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  37. P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011).
    [CrossRef]
  38. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
    [CrossRef]
  39. B. M. Ross and L. P. Lee, “Comparison of near- and far- field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009).
    [CrossRef]
  40. P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
    [CrossRef]
  41. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
    [CrossRef]

2012 (3)

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012).
[CrossRef]

R. Near, C. Tabor, J. S. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,” Nano Lett. 12, 2158–2164 (2012).
[CrossRef]

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
[CrossRef]

2011 (8)

A. Centeno, F. Xie, and N. Alford, “.Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles,” J. Opt. Soc. Am. B 28, 325–330 (2011).
[CrossRef]

O. Peña-Rodríguez, U. Pal, V. Rodríguez-Iglesias, L. Rodríguez-Fernández, and A. Oliver, “Configuring Au and Ag nanorods for sensing applications,” J. Opt. Soc. Am. B 28, 714–720 (2011).
[CrossRef]

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant Plasmon modes,” Opt. Express 19, 6450–6461 (2011).
[CrossRef]

L. Bigot, H. El Hamzaoui, A. Le Rouge, G. Bouwmans, F. Chassagneux, B. Capoen, and M. Bouazaoui, “Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber,” Opt. Express 19, 19061–19066 (2011).
[CrossRef]

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011).
[CrossRef]

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
[CrossRef]

M. Dridi and A. Vial, “Improved description of the plasmon resonance wavelength shift in metallic nanoparticle pair,” Plasmonics 6, 637–641 (2011).
[CrossRef]

2010 (4)

F. M. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimmers,” Nano Lett. 10, 1787–1792 (2010).
[CrossRef]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[CrossRef]

L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
[CrossRef]

H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18, 165–172 (2010).
[CrossRef]

2009 (6)

B. M. Ross and L. P. Lee, “Comparison of near- and far- field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26, 2370–2376 (2009).
[CrossRef]

E. Simsek, “On the surface plasmon resonance modes of metal nanoparticle chains and arrays,” Plasmonics 4, 223–230 (2009).
[CrossRef]

A. M. Funston, C. Novo, Tim. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

K. T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4, 79–93 (2009).
[CrossRef]

C. Tabor, D. V. Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3, 3670–3678 (2009).
[CrossRef]

2008 (3)

O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[CrossRef]

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

2007 (5)

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7, 557–564 (2007).
[CrossRef]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

P. K. Jain and M. A. EI-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7, 2854–2854 (2007).
[CrossRef]

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2, 173–183 (2007).
[CrossRef]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef]

2005 (2)

N. L. Rosi and C. A. Mirkin, “Nanostuctures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

2004 (1)

2003 (2)

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

1999 (1)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1984 (1)

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984).
[CrossRef]

Abajo, F. J. G.

Aizpurua, J.

Albella, P.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Albrektsen, O.

Alford, N.

Au, L.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Baumberg, J. J.

F. M. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimmers,” Nano Lett. 10, 1787–1792 (2010).
[CrossRef]

Beermann, J.

Berkovitch, N.

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
[CrossRef]

Bigot, L.

Bouazaoui, M.

Bouwmans, G.

Bozhevolnyi, S. I.

J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26, 2370–2376 (2009).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Brown, A.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Brown, L. V.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[CrossRef]

Bryant, G. W.

Capoen, B.

Centeno, A.

Chang, C. H.

Chassagneux, F.

Chen, J. Y.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Chui, H. C.

Crespo-Sosa, A.

Cueto, B. G.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Darbha, G. K.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2, 173–183 (2007).
[CrossRef]

Davis, Tim. J.

A. M. Funston, C. Novo, Tim. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

DeJarnette, D.

Devaus, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Ding, H.

K. T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4, 79–93 (2009).
[CrossRef]

Doningo, C.

L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
[CrossRef]

Dragnea, B.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7, 557–564 (2007).
[CrossRef]

Dridi, M.

M. Dridi and A. Vial, “Improved description of the plasmon resonance wavelength shift in metallic nanoparticle pair,” Plasmonics 6, 637–641 (2011).
[CrossRef]

Duan, J. S.

R. Near, C. Tabor, J. S. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,” Nano Lett. 12, 2158–2164 (2012).
[CrossRef]

DuFort, C. C.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7, 557–564 (2007).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

EI-Sayed, M. A.

P. K. Jain and M. A. EI-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7, 2854–2854 (2007).
[CrossRef]

Ekinci, Y.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

El Hamzaoui, H.

El-Sayed, M.

R. Near, C. Tabor, J. S. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,” Nano Lett. 12, 2158–2164 (2012).
[CrossRef]

El-Sayed, M. A.

C. Tabor, D. V. Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3, 3670–3678 (2009).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[CrossRef]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

Everitt, H. O.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Funston, A. M.

A. M. Funston, C. Novo, Tim. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

Garcia-Ramos, J. V.

L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
[CrossRef]

Gonzalez, F.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Guerrini, L.

L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
[CrossRef]

Halas, N. J.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Harbin, B.

Hardy, W.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2, 173–183 (2007).
[CrossRef]

Haute, D. V.

C. Tabor, D. V. Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3, 3670–3678 (2009).
[CrossRef]

Herzig, H. P.

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Huang, C. H.

Huang, F. M.

F. M. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimmers,” Nano Lett. 10, 1787–1792 (2010).
[CrossRef]

Huang, W. Y.

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Izquierdo-Lorenzo, I.

L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[CrossRef]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

P. K. Jain and M. A. EI-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7, 2854–2854 (2007).
[CrossRef]

Kim, T. H.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Lan, Y. C.

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Lassiter, J. B.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[CrossRef]

Le Rouge, A.

Lee, L. P.

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Li, X. D.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Li, Z. Y.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Lin, H. Y.

Link, S.

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant Plasmon modes,” Opt. Express 19, 6450–6461 (2011).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

Liu, J.

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012).
[CrossRef]

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012).
[CrossRef]

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011).
[CrossRef]

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011).
[CrossRef]

Liu, P.

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012).
[CrossRef]

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011).
[CrossRef]

Loffler, J. F.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

Metiu, H.

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984).
[CrossRef]

Mirkin, C. A.

N. L. Rosi and C. A. Mirkin, “Nanostuctures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
[CrossRef]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

Moreno, F.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Mulvaney, P.

A. M. Funston, C. Novo, Tim. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

Near, R.

R. Near, C. Tabor, J. S. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,” Nano Lett. 12, 2158–2164 (2012).
[CrossRef]

Nielsen, M. G.

Nordlander, P.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Novikov, S. M.

Novo, C.

A. M. Funston, C. Novo, Tim. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

Oliver, A.

Onuta, T. D.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7, 557–564 (2007).
[CrossRef]

Orenstein, M.

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
[CrossRef]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Pachter, R.

R. Near, C. Tabor, J. S. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,” Nano Lett. 12, 2158–2164 (2012).
[CrossRef]

Pal, U.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Peña, O.

Peña-Rodríguez, O.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Prasad, P. N.

K. T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4, 79–93 (2009).
[CrossRef]

Ray, A.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2, 173–183 (2007).
[CrossRef]

Ray, P. C.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2, 173–183 (2007).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Rockstuhl, C.

Rodríguez-Fernández, L.

Rodríguez-Iglesias, V.

Rodriguez-Oliveros, R.

L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
[CrossRef]

Romero, I.

Roper, D. K.

Rosi, N. L.

N. L. Rosi and C. A. Mirkin, “Nanostuctures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
[CrossRef]

Ross, B. M.

Salt, M. G.

Sanchez-Cortes, S.

L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
[CrossRef]

Sanchez-Gil, J. A.

L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
[CrossRef]

Schaich, W. L.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7, 557–564 (2007).
[CrossRef]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Siekkinen, A.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Simsek, E.

E. Simsek, “On the surface plasmon resonance modes of metal nanoparticle chains and arrays,” Plasmonics 4, 223–230 (2009).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Sobhani, H.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[CrossRef]

Solak, H. H.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Swihart, M. T.

K. T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4, 79–93 (2009).
[CrossRef]

Tabor, C.

R. Near, C. Tabor, J. S. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,” Nano Lett. 12, 2158–2164 (2012).
[CrossRef]

C. Tabor, D. V. Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3, 3670–3678 (2009).
[CrossRef]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Vial, A.

M. Dridi and A. Vial, “Improved description of the plasmon resonance wavelength shift in metallic nanoparticle pair,” Plasmonics 6, 637–641 (2011).
[CrossRef]

Videen, G.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Waegele, M.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7, 557–564 (2007).
[CrossRef]

Walker, J.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2, 173–183 (2007).
[CrossRef]

Wang, D. L.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Wang, Y. T.

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012).
[CrossRef]

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011).
[CrossRef]

Warsen, A.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Willingham, B.

Wu, P. C.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Xi, J. F.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Xia, Y. N.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Xie, F.

Xie, J. H.

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012).
[CrossRef]

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011).
[CrossRef]

Yang, Y.

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

Yong, K. T.

K. T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4, 79–93 (2009).
[CrossRef]

Zhang, H.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

Zhang, X.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Zhao, X. X.

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012).
[CrossRef]

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011).
[CrossRef]

ACS Nano (2)

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[CrossRef]

C. Tabor, D. V. Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3, 3670–3678 (2009).
[CrossRef]

Chem. Rev. (1)

N. L. Rosi and C. A. Mirkin, “Nanostuctures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
[CrossRef]

J. Appl. Phys. (1)

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (5)

J. Phys. Chem. B (1)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

J. Phys. Chem. C (1)

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[CrossRef]

Nano Lett. (11)

P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011).
[CrossRef]

F. M. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimmers,” Nano Lett. 10, 1787–1792 (2010).
[CrossRef]

P. K. Jain and M. A. EI-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7, 2854–2854 (2007).
[CrossRef]

A. M. Funston, C. Novo, Tim. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
[CrossRef]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007).
[CrossRef]

R. Near, C. Tabor, J. S. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,” Nano Lett. 12, 2158–2164 (2012).
[CrossRef]

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7, 557–564 (2007).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Opt. Commun. (2)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Optik (1)

P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012).
[CrossRef]

Plasmonics (5)

L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010).
[CrossRef]

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2, 173–183 (2007).
[CrossRef]

K. T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4, 79–93 (2009).
[CrossRef]

M. Dridi and A. Vial, “Improved description of the plasmon resonance wavelength shift in metallic nanoparticle pair,” Plasmonics 6, 637–641 (2011).
[CrossRef]

E. Simsek, “On the surface plasmon resonance modes of metal nanoparticle chains and arrays,” Plasmonics 4, 223–230 (2009).
[CrossRef]

Prog. Surf. Sci. (1)

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Science (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of two coupled ovoid nanoparticles, which are identical but oriented inversely. The adjacent ends are two hemiellipsoids with semimajor axis b and semiminor axis a; the opposite ends are two hemispheres with radius a. In this paper, a is fixed as 15 nm and b can be adjusted. d denotes the particle separation. The incident direction and electric polarization direction of illuminating light are perpendicular to and parallel to the interparticle line (y-axis), respectively.

Fig. 2.
Fig. 2.

Scattering cross section (SCS) spectra of the nanoparticle pair, modeled as in Fig. 1, made of silver immersed in air with the particle separation d decreasing from 1000 to 5 nm. Four conditions, (a) r=0.5, (b) r=1, (c) r=2, and (d) r=3 are considered. The spectra in each part are adjusted vertically in order to compare the shift of resonant peaks which are shown as the thick dashed lines, and the thin dashed line shows the spectrum of the corresponding individual nanoparticle.

Fig. 3.
Fig. 3.

(a) Resonant peak shifts of the four conditions in Fig. 2 as a function of particle separation d in the range of [5, 100] nm. The four kinds of points denote r=0.5, 1, 2, and 3, respectively. (b) Universal scaling of the peak shifts. Δλ is normalized by λ0, and d is normalized by b. After these normalizations, the four kinds of points fall on a common curve (the solid line), with the formula Δλ/λ0=c1exp(c2d/b), c1=0.10±0.01, c2=2.2±0.05. The inset shows the logarithmic scale form for the range 0<d/b2.5.

Fig. 4.
Fig. 4.

Fitting coefficients c1 and c2 with the function of the outside medium’s refractive index n. The nanoparticle pair modeled as in Fig. 1 and made of silver is simulated. The results of n=1.0, 1.33, 1.36, 1.47, 1.6, and 1.8 are shown.

Fig. 5.
Fig. 5.

Refractive indexes of (a) silver, (b) gold, and (c) aluminum in the wavebands that contain all the resonant wavelengths studied in this paper. The real and the imaginary parts of the refractive indexes are found to be nearly linear with λ. The gradients of the real part and the imaginary part are noted as kr and ki, respectively, and their values are labeled beside each line.

Fig. 6.
Fig. 6.

Resonant wavelengths of the nanoparticle pair modeled as in Fig. 1 and made of gallium immersed in air or water. The solid lines in each part denote the SCS spectrum simulated using 3D-BEM, and the particle distances d=5, 10, 15, 20, 30, and 50 nm are considered. The dashed lines denote the predicted resonant wavelengths using Eqs. (4), (5), and (1) for each particle distance, and the predicted values are labeled beside each dashed line to the left.

Tables (1)

Tables Icon

Table 1. Fitting Coefficients c1 and c2 of the Nanoparticle Pair Modeled as in Fig. 1, Made of Gold or Aluminum and Immersed in Air or Water

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δλ/λ0=c1exp(c2d/b),
c1=c01n,
c2=c02/n.
c1=(21.13kr11.68ki+0.019)·n,
c2=(173.99kr+31.45ki+2.35)/n.

Metrics