A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).

[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010).

[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).

[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).

[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).

[CrossRef]

D. O. Guney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18, 12348–12353 (2010).

[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).

[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5 K,” Phys. Rev. B 79, 220505(R) (2009).

[CrossRef]

C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009).

[CrossRef]

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).

[CrossRef]

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).

[CrossRef]

X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).

[CrossRef]

Q. Thommen and P. Mandel, “Electromagnetically induced left handedness in optically excited four-level atomic media,” Phys. Rev. Lett. 96, 053601 (2006).

[CrossRef]

Q. Thommen and P. Mandel, “Left-handed properties of erbium-doped crystals,” Opt. Lett. 31, 1803–1805 (2006).

[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).

[CrossRef]

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).

[CrossRef]

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).

[CrossRef]

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).

[CrossRef]

P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005).

[CrossRef]

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).

[CrossRef]

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).

[CrossRef]

M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004).

[CrossRef]

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).

[CrossRef]

A. Lakhtakia, “Positive and negative Goos–Hänchen shifts and negative phase-velocity mediums,” Int. J. Electron. Commun. (AEU) 58, 229–231 (2004).

[CrossRef]

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).

[CrossRef]

A. Lakhtakia, “Handedness reversal of circular Bragg phenomenon due to negative real permittivity and permeability,” Opt. Express 11, 716–722 (2003).

[CrossRef]

C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003).

[CrossRef]

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).

[CrossRef]

X. C. Gao, “Geometric phases for photons in an optical fibre and some related predictions,” Chin. Phys. Lett. 19, 613–616 (2002).

[CrossRef]

A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002).

[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).

[CrossRef]

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).

[CrossRef]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).

[CrossRef]

T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961).

[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).

[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5 K,” Phys. Rev. B 79, 220505(R) (2009).

[CrossRef]

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).

[CrossRef]

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).

[CrossRef]

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).

[CrossRef]

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).

[CrossRef]

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).

[CrossRef]

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).

[CrossRef]

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).

[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).

[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).

[CrossRef]

A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002).

[CrossRef]

D. M. Cook, The Theory of the Electromagnetic Field (Prentice-Hall, 1975), Chap. 11.

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).

[CrossRef]

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).

[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).

[CrossRef]

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).

[CrossRef]

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).

[CrossRef]

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).

[CrossRef]

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).

[CrossRef]

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).

[CrossRef]

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).

[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).

[CrossRef]

X. C. Gao, “Geometric phases for photons in an optical fibre and some related predictions,” Chin. Phys. Lett. 19, 613–616 (2002).

[CrossRef]

S. Gasiorowicz, Quantum Physics, 3rd ed. (Wiley, 2003), pp. 193–264.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).

[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).

[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).

[CrossRef]

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).

[CrossRef]

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).

[CrossRef]

C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003).

[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).

[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).

[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).

[CrossRef]

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 2001), Chap. 4, pp. 159–162.

P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005).

[CrossRef]

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).

[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).

[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5 K,” Phys. Rev. B 79, 220505(R) (2009).

[CrossRef]

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).

[CrossRef]

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).

[CrossRef]

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).

[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).

[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5 K,” Phys. Rev. B 79, 220505(R) (2009).

[CrossRef]

T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961).

[CrossRef]

D. O. Guney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18, 12348–12353 (2010).

[CrossRef]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).

[CrossRef]

C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009).

[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).

[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5 K,” Phys. Rev. B 79, 220505(R) (2009).

[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).

[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).

[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).

[CrossRef]

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).

[CrossRef]

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).

[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).

[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).

[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).

[CrossRef]

M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004).

[CrossRef]

A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002).

[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).

[CrossRef]

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).

[CrossRef]

M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004).

[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

[CrossRef]

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).

[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Chap. 7.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[CrossRef]

C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009).

[CrossRef]

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).

[CrossRef]

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).

[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).

[CrossRef]

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).

[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010).

[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction in a Raman chiral system,” The 41st Winter Colloquium on the Physics of Quantum Electronics (PQE-2011), Snowbird, Utah, USA (2–6 Jan. 2011).

C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003).

[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[CrossRef]

D. O. Guney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18, 12348–12353 (2010).

[CrossRef]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).

[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).

[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).

[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).

[CrossRef]

P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005).

[CrossRef]

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).

[CrossRef]

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).

[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).

[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5 K,” Phys. Rev. B 79, 220505(R) (2009).

[CrossRef]

T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961).

[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).

[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5 K,” Phys. Rev. B 79, 220505(R) (2009).

[CrossRef]

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).

[CrossRef]

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).

[CrossRef]

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).

[CrossRef]

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).

[CrossRef]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).

[CrossRef]

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).

[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).

[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).

[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).

[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).

[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010).

[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction in a Raman chiral system,” The 41st Winter Colloquium on the Physics of Quantum Electronics (PQE-2011), Snowbird, Utah, USA (2–6 Jan. 2011).

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).

[CrossRef]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).

[CrossRef]

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).

[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Chap. 7.

X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).

[CrossRef]

X. C. Gao, “Geometric phases for photons in an optical fibre and some related predictions,” Chin. Phys. Lett. 19, 613–616 (2002).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

A. Lakhtakia, “Positive and negative Goos–Hänchen shifts and negative phase-velocity mediums,” Int. J. Electron. Commun. (AEU) 58, 229–231 (2004).

[CrossRef]

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).

[CrossRef]

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).

[CrossRef]

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

[CrossRef]

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).

[CrossRef]

A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002).

[CrossRef]

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).

[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).

[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).

[CrossRef]

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).

[CrossRef]

C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003).

[CrossRef]

M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004).

[CrossRef]

C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009).

[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010).

[CrossRef]

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).

[CrossRef]

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).

[CrossRef]

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).

[CrossRef]

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).

[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5 K,” Phys. Rev. B 79, 220505(R) (2009).

[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).

[CrossRef]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).

[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).

[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).

[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).

[CrossRef]

Q. Thommen and P. Mandel, “Electromagnetically induced left handedness in optically excited four-level atomic media,” Phys. Rev. Lett. 96, 053601 (2006).

[CrossRef]

T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961).

[CrossRef]

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[CrossRef]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).

[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction in a Raman chiral system,” The 41st Winter Colloquium on the Physics of Quantum Electronics (PQE-2011), Snowbird, Utah, USA (2–6 Jan. 2011).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 2001), Chap. 4, pp. 159–162.

D. M. Cook, The Theory of the Electromagnetic Field (Prentice-Hall, 1975), Chap. 11.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Chap. 7.

S. Gasiorowicz, Quantum Physics, 3rd ed. (Wiley, 2003), pp. 193–264.