Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Versatile laser system for experiments with cold atomic gases

Not Accessible

Your library or personal account may give you access

Abstract

We describe a simple and compact architecture for generating all-optical frequencies required for the laser cooling, state preparation, and detection of atoms in an ultracold rubidium-87 experiment from a single 780 nm laser source. In particular, repump light 6.5GHz away from the cooling transition is generated by using a high-bandwidth fiber-coupled electro-optic modulator (EOM) in a feedback loop configuration. The looped repump light generation scheme solves the problem of the limited power handling capabilities characteristic of fiber EOMs. We demonstrate the functionality of the system by creating a high-atom-number magneto-optical trap (MOT).

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Dual-channel amplification in a single-mode diode laser for multi-isotope laser cooling

James L. Booth, Janelle Van Dongen, Paul Lebel, Bruce G. Klappauf, and Kirk W. Madison
J. Opt. Soc. Am. B 24(11) 2914-2920 (2007)

Compact laser cooling apparatus for simultaneous cooling of lithium and rubidium

Keith Ladouceur, Bruce G. Klappauf, Janelle Van Dongen, Nina Rauhut, Bastian Schuster, Arthur K. Mills, David J. Jones, and Kirk W. Madison
J. Opt. Soc. Am. B 26(2) 210-217 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved