Abstract

We report on the fabrication of single-layered gold sawtooth gratings consisting of И, V, and N basic units by using an e-beam direct write technique together with a lift-off process. The И- and N-type sawtooth gratings are 2D chiral but not the V-type sawtooth grating. Large circular dichroism (CD) in the visible range is observed for the chiral sawtooth gratings while there is none for the V-type sawtooth grating. The experimental results are modelled qualitatively by simulations using a finite integration technique. The simulations show that the CD observed is due to the difference in the absorption in the metal for circularly polarized incidence light of different handedness. The sawtooth gratings are simple and can be easily mass produced for possible applications in waveplates and circular polarizers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lakhtakia, ed., Selected Papers on Natural Optical Activity (SPIE, 1990).
  2. L. Barron, “Molecular Light Scattering and Optical Activity,” 2nd ed. (Cambridge University, 2004).
  3. K. Claborn, C. Isborn, W. Kaminsky, and B. Kahr, “Optical rotation of achiral compounds,” Angew. Chem. 47, 5706–5717 (2008).
    [CrossRef]
  4. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  5. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
    [CrossRef]
  6. M. Thiel, G. von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Opt. Lett. 32, 2547–2549 (2007).
    [CrossRef]
  7. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
    [CrossRef]
  8. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15, 11117–11125 (2007).
    [CrossRef]
  9. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
    [CrossRef]
  10. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009).
    [CrossRef]
  11. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35, 1593–1595 (2010).
    [CrossRef]
  12. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef]
  13. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
    [CrossRef]
  14. W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A 8, 878–890 (2006).
    [CrossRef]
  15. K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
    [CrossRef]
  16. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
    [CrossRef]
  17. X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745–8748 (2008).
    [CrossRef]
  18. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [CrossRef]
  19. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
    [CrossRef]
  20. S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
    [CrossRef]
  21. J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17, 14172–14179 (2009).
    [CrossRef]
  22. W. Gao and W. Y. Tam, “Optical activities in complementary double layers of six-armed metallic gammadion structures,” J. Opt. 13, 015101 (2011).
    [CrossRef]
  23. W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double layer metallic crossed-gratings,” J. Opt. 13, 115101 (2011).
    [CrossRef]
  24. We used the Drude-Lorentz parameters in Table 1 of A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005) for the Au dispersion.
    [CrossRef]
  25. We used the ITO data from Sopralab ( http://www.sopra-sa.com/ ) for the ITO glass substrate.
  26. See Table 1 of G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
    [CrossRef]
  27. Meep Download, http://ab-initio.mit.edu/wiki/index.php/Meep_Download .

2011 (3)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[CrossRef]

W. Gao and W. Y. Tam, “Optical activities in complementary double layers of six-armed metallic gammadion structures,” J. Opt. 13, 015101 (2011).
[CrossRef]

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double layer metallic crossed-gratings,” J. Opt. 13, 115101 (2011).
[CrossRef]

2010 (1)

2009 (5)

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17, 14172–14179 (2009).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009).
[CrossRef]

2008 (4)

K. Claborn, C. Isborn, W. Kaminsky, and B. Kahr, “Optical rotation of achiral compounds,” Angew. Chem. 47, 5706–5717 (2008).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[CrossRef]

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745–8748 (2008).
[CrossRef]

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
[CrossRef]

2007 (2)

2006 (2)

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A 8, 878–890 (2006).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

2005 (3)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[CrossRef]

We used the Drude-Lorentz parameters in Table 1 of A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005) for the Au dispersion.
[CrossRef]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

1999 (1)

See Table 1 of G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

Bagnall, D. M.

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A 8, 878–890 (2006).
[CrossRef]

Bai, B.

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745–8748 (2008).
[CrossRef]

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
[CrossRef]

Barchiesi, D.

We used the Drude-Lorentz parameters in Table 1 of A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005) for the Au dispersion.
[CrossRef]

Barron, L.

L. Barron, “Molecular Light Scattering and Optical Activity,” 2nd ed. (Cambridge University, 2004).

Chen, H.

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double layer metallic crossed-gratings,” J. Opt. 13, 115101 (2011).
[CrossRef]

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[CrossRef]

Claborn, K.

K. Claborn, C. Isborn, W. Kaminsky, and B. Kahr, “Optical rotation of achiral compounds,” Angew. Chem. 47, 5706–5717 (2008).
[CrossRef]

de la Chapelle, M. L.

We used the Drude-Lorentz parameters in Table 1 of A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005) for the Au dispersion.
[CrossRef]

Decker, M.

Dong, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17, 14172–14179 (2009).
[CrossRef]

Engheta, N.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

Fedotov, V. A.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[CrossRef]

Gao, W.

W. Gao and W. Y. Tam, “Optical activities in complementary double layers of six-armed metallic gammadion structures,” J. Opt. 13, 015101 (2011).
[CrossRef]

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double layer metallic crossed-gratings,” J. Opt. 13, 115101 (2011).
[CrossRef]

Ghosh, G.

See Table 1 of G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

Grimault, A. S.

We used the Drude-Lorentz parameters in Table 1 of A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005) for the Au dispersion.
[CrossRef]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

Isborn, C.

K. Claborn, C. Isborn, W. Kaminsky, and B. Kahr, “Optical rotation of achiral compounds,” Angew. Chem. 47, 5706–5717 (2008).
[CrossRef]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

Kafesaki, M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009).
[CrossRef]

Kahr, B.

K. Claborn, C. Isborn, W. Kaminsky, and B. Kahr, “Optical rotation of achiral compounds,” Angew. Chem. 47, 5706–5717 (2008).
[CrossRef]

Kaminsky, W.

K. Claborn, C. Isborn, W. Kaminsky, and B. Kahr, “Optical rotation of achiral compounds,” Angew. Chem. 47, 5706–5717 (2008).
[CrossRef]

Kanda, N.

Karvinen, P.

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745–8748 (2008).
[CrossRef]

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
[CrossRef]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[CrossRef]

Konishi, K.

Koschny, T.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009).
[CrossRef]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17, 14172–14179 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Kriegler, C. E.

Kuwata-Gonokami, M.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
[CrossRef]

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745–8748 (2008).
[CrossRef]

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15, 11117–11125 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

Leung, H. M.

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double layer metallic crossed-gratings,” J. Opt. 13, 115101 (2011).
[CrossRef]

Li, J.

S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Li, Y.

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double layer metallic crossed-gratings,” J. Opt. 13, 115101 (2011).
[CrossRef]

Linden, S.

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[CrossRef]

Lu, X.

S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Macías, D.

We used the Drude-Lorentz parameters in Table 1 of A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005) for the Au dispersion.
[CrossRef]

Meng, X.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
[CrossRef]

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745–8748 (2008).
[CrossRef]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[CrossRef]

Park, Y.

S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Potts, A.

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A 8, 878–890 (2006).
[CrossRef]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[CrossRef]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Ruther, M.

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Soukoulis, C.

Soukoulis, C. M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35, 1593–1595 (2010).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009).
[CrossRef]

Svirko, Y.

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745–8748 (2008).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

Svirko, Y. P.

Tam, W. Y.

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double layer metallic crossed-gratings,” J. Opt. 13, 115101 (2011).
[CrossRef]

W. Gao and W. Y. Tam, “Optical activities in complementary double layers of six-armed metallic gammadion structures,” J. Opt. 13, 015101 (2011).
[CrossRef]

Thiel, M.

Turunen, J.

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745–8748 (2008).
[CrossRef]

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

Vial, A.

We used the Drude-Lorentz parameters in Table 1 of A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005) for the Au dispersion.
[CrossRef]

von Freymann, G.

Wang, B.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Wegener, M.

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Zhang, S.

S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Zhang, W.

S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A 8, 878–890 (2006).
[CrossRef]

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[CrossRef]

S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Zhao, R.

Zheludev, N. I.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[CrossRef]

Zhou, J.

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17, 14172–14179 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009).
[CrossRef]

Ziolkowski, R. W.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

Angew. Chem. (1)

K. Claborn, C. Isborn, W. Kaminsky, and B. Kahr, “Optical rotation of achiral compounds,” Angew. Chem. 47, 5706–5717 (2008).
[CrossRef]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[CrossRef]

J. Opt. (2)

W. Gao and W. Y. Tam, “Optical activities in complementary double layers of six-armed metallic gammadion structures,” J. Opt. 13, 015101 (2011).
[CrossRef]

W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, “Circular dichroism in double layer metallic crossed-gratings,” J. Opt. 13, 115101 (2011).
[CrossRef]

J. Opt. A (2)

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A 8, 878–890 (2006).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009).
[CrossRef]

Nano Lett. (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[CrossRef]

Opt. Commun. (1)

See Table 1 of G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

We used the Drude-Lorentz parameters in Table 1 of A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005) for the Au dispersion.
[CrossRef]

Phys. Rev. E (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Science (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Thin Solid Films (1)

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745–8748 (2008).
[CrossRef]

Other (5)

We used the ITO data from Sopralab ( http://www.sopra-sa.com/ ) for the ITO glass substrate.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

A. Lakhtakia, ed., Selected Papers on Natural Optical Activity (SPIE, 1990).

L. Barron, “Molecular Light Scattering and Optical Activity,” 2nd ed. (Cambridge University, 2004).

Meep Download, http://ab-initio.mit.edu/wiki/index.php/Meep_Download .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Procedures for the fabrication of Au-embedded symmetric sawtooth grating.

Fig. 2.
Fig. 2.

SEM of (a)  И -, (b)  V -, and (c)  N - type sawtooth grating before embedding. The insets are unit cells used in the FIT simulations. The scale bar is 1 μm for all images.

Fig. 3.
Fig. 3.

Normalized forward [(a)–(c)] and backward [(d)–(f)] transmittance of sawtooth grating. (a) and (d) for И -, (b) and (e) for V -, and (c) and (f) for N - type sawtooth grating.

Fig. 4.
Fig. 4.

Forward [(a)–(c)], backward [(d)–(f)], and sum [(g)–(i)] CD of sawtooth grating. Top row for И -, middle row for V -, and bottom row for N -type sawtooth grating.

Fig. 5.
Fig. 5.

Calculated normalized forward [(a)–(c)] and backward [(d)–(f)] transmittance of sawtooth grating. (a) and (d) for И -, (b) and (e) for V -, and (c) and (f) for N -type sawtooth grating.

Fig. 6.
Fig. 6.

Calculated forward [(a)–(c)], backward [(d)–(f)], and sum [(g)–(i)] CD of sawtooth grating. Top row for И -, middle row for V -, and bottom row for N -type sawtooth grating.

Fig. 7.
Fig. 7.

Calculated normalized forward reflectance [(a)–(c)] and absorption [(d)–(f)] of sawtooth grating. Top row for И -, middle row for V -, and bottom row for N -type sawtooth grating.

Fig. 8.
Fig. 8.

Calculated current density [(a)–(b)] at central plane ( z = 0 ) of И -type sawtooth grating at wavelength 714 nm. (c)–(d), corresponding current density, J z (X100) and J , polar plot at locations as indicated as circles in (a) and (b); and (e)–(f), corresponding ohmic power loss. Left and right columns are for LCP and RCP incidence light, respectively. Note that the scale bar for the power loss is in J / m 3 for both LCP and RCP.

Metrics