Abstract

We analyze the hybrid absorptive-dispersive optical bistability (OB) behavior in an open Λ-type three-level atomic system by using a microwave field to drive the hyperfine transition between two lower states, along with the consideration of incoherent pumping and spontaneously generated coherence. Different from the closed system, we show that the bistable threshold intensity and related hysteresis loop can be controlled by adjusting the ratio between atomic injection and exit rates. More interestingly, the appearance and disappearance of OB can be transformed mutually by varying the relative phase of three coherent fields under the condition of a strong spontaneously generated coherence. The manipulation of OB behavior through the intensity of the microwave field and the atomic cooperation parameter is also analyzed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
    [CrossRef]
  2. H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).
    [CrossRef]
  3. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  4. Y. F. Zhu, A. I. Rubiera, and M. Xiao, “Inversionless lasing and photon statistics in a V-type atomic system,” Phys. Rev. A 53, 1065–1071 (1996).
    [CrossRef]
  5. Y. P. Niu, and S. Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
    [CrossRef]
  6. Y. Wu, and L. Deng, “Achieving multi-frequency mode entanglement with ultra-slow multi-wave mixing,” Opt. Lett. 29, 1144 (2004).
    [CrossRef]
  7. Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-Lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [CrossRef]
  8. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
    [CrossRef]
  9. Y. Wu and L. Deng, “Ultra slow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [CrossRef]
  10. Y. Wu and L. Deng, “Ultra slow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064 (2004).
    [CrossRef]
  11. Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold atom media,” Phys. Rev. A 71, 053820 (2005).
    [CrossRef]
  12. W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010).
    [CrossRef]
  13. L. Si, W. X. Yang, J. B. Liu, J. Li, and X. Yang, “Slow vector optics solitons in a cold five-level hyper V-type atomic system,” Opt. Express 17, 7771 (2009).
    [CrossRef]
  14. S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
    [CrossRef]
  15. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
    [CrossRef]
  16. A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
    [CrossRef]
  17. J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
    [CrossRef]
  18. J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Physica D 228, 148 (2007).
    [CrossRef]
  19. X. Y. Lu, J. H. Li, J. B. Liu, and J. M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B 39, 5161 (2006).
    [CrossRef]
  20. J. Wu, X. Y. Lü, and L. L. Zheng, “Controllable optical bistability and multistability in a double two-level atomic system,” J. Phys. B 43, 161003 (2010).
    [CrossRef]
  21. Z. P. Wang, “Optical bistability via coherent and incoherent fields in an Er3+-doped yttrium-aluminum-garnet crystal,” Opt. Commun. 283, 3291–3295 (2010).
    [CrossRef]
  22. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
    [CrossRef]
  23. S. Singh, J. Rai, C. M. Bowden, and A. Postan, “Intrinsic optical bistability with squeezed vacuum,” Phys. Rev. A 45, 5160–5165 (1992).
    [CrossRef]
  24. P. Galatola, L. A. Lugiato, M. G. Porreca, and P. Tombesi, “Optical switching by variation of the squeezing phase,” Opt. Commun. 81, 175–178 (1991).
    [CrossRef]
  25. Z. Chen, C. Du, S. Gong, and Z. Z. Xu, “Optical bistability via squeezed vacuum input,” Phys. Lett. A 259, 15–19 (1999).
    [CrossRef]
  26. C. Liu, S. Gong, X. Fan, and Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383–388 (2004).
    [CrossRef]
  27. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), p. 161.
  28. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [CrossRef]
  29. X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005).
    [CrossRef]
  30. R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
    [CrossRef]
  31. A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
    [CrossRef]
  32. A. Joshi, W. Yang, and M. Xiao, “Hysteresis loop with controllable shape and direction in an optical ring cavity,” Phys. Rev. A 70, 041802(R) (2004).
    [CrossRef]
  33. Y. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
    [CrossRef]

2010 (3)

J. Wu, X. Y. Lü, and L. L. Zheng, “Controllable optical bistability and multistability in a double two-level atomic system,” J. Phys. B 43, 161003 (2010).
[CrossRef]

Z. P. Wang, “Optical bistability via coherent and incoherent fields in an Er3+-doped yttrium-aluminum-garnet crystal,” Opt. Commun. 283, 3291–3295 (2010).
[CrossRef]

W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010).
[CrossRef]

2009 (2)

L. Si, W. X. Yang, J. B. Liu, J. Li, and X. Yang, “Slow vector optics solitons in a cold five-level hyper V-type atomic system,” Opt. Express 17, 7771 (2009).
[CrossRef]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

2007 (1)

J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Physica D 228, 148 (2007).
[CrossRef]

2006 (3)

X. Y. Lu, J. H. Li, J. B. Liu, and J. M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B 39, 5161 (2006).
[CrossRef]

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Y. P. Niu, and S. Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
[CrossRef]

2005 (3)

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold atom media,” Phys. Rev. A 71, 053820 (2005).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005).
[CrossRef]

2004 (6)

A. Joshi, W. Yang, and M. Xiao, “Hysteresis loop with controllable shape and direction in an optical ring cavity,” Phys. Rev. A 70, 041802(R) (2004).
[CrossRef]

C. Liu, S. Gong, X. Fan, and Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383–388 (2004).
[CrossRef]

Y. Wu and L. Deng, “Ultra slow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-Lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu, and L. Deng, “Achieving multi-frequency mode entanglement with ultra-slow multi-wave mixing,” Opt. Lett. 29, 1144 (2004).
[CrossRef]

Y. Wu and L. Deng, “Ultra slow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064 (2004).
[CrossRef]

2003 (3)

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

2001 (1)

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).
[CrossRef]

1999 (1)

Z. Chen, C. Du, S. Gong, and Z. Z. Xu, “Optical bistability via squeezed vacuum input,” Phys. Lett. A 259, 15–19 (1999).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

1996 (2)

Y. F. Zhu, A. I. Rubiera, and M. Xiao, “Inversionless lasing and photon statistics in a V-type atomic system,” Phys. Rev. A 53, 1065–1071 (1996).
[CrossRef]

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

1995 (1)

Y. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[CrossRef]

1992 (1)

S. Singh, J. Rai, C. M. Bowden, and A. Postan, “Intrinsic optical bistability with squeezed vacuum,” Phys. Rev. A 45, 5160–5165 (1992).
[CrossRef]

1991 (1)

P. Galatola, L. A. Lugiato, M. G. Porreca, and P. Tombesi, “Optical switching by variation of the squeezing phase,” Opt. Commun. 81, 175–178 (1991).
[CrossRef]

1989 (1)

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef]

1978 (1)

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[CrossRef]

1976 (1)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

Bonifacio, R.

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[CrossRef]

Bowden, C. M.

S. Singh, J. Rai, C. M. Bowden, and A. Postan, “Intrinsic optical bistability with squeezed vacuum,” Phys. Rev. A 45, 5160–5165 (1992).
[CrossRef]

Brown, A.

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

Chen, A. X.

W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010).
[CrossRef]

Chen, Z.

Z. Chen, C. Du, S. Gong, and Z. Z. Xu, “Optical bistability via squeezed vacuum input,” Phys. Lett. A 259, 15–19 (1999).
[CrossRef]

Cui, N.

X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005).
[CrossRef]

Deng, L.

Du, C.

Z. Chen, C. Du, S. Gong, and Z. Z. Xu, “Optical bistability via squeezed vacuum input,” Phys. Lett. A 259, 15–19 (1999).
[CrossRef]

Du, S. D.

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Fan, X.

X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005).
[CrossRef]

C. Liu, S. Gong, X. Fan, and Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383–388 (2004).
[CrossRef]

Galatola, P.

P. Galatola, L. A. Lugiato, M. G. Porreca, and P. Tombesi, “Optical switching by variation of the squeezing phase,” Opt. Commun. 81, 175–178 (1991).
[CrossRef]

Gavrielides, A.

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Gong, S.

X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005).
[CrossRef]

C. Liu, S. Gong, X. Fan, and Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383–388 (2004).
[CrossRef]

Z. Chen, C. Du, S. Gong, and Z. Z. Xu, “Optical bistability via squeezed vacuum input,” Phys. Lett. A 259, 15–19 (1999).
[CrossRef]

Gong, S. Q.

Y. P. Niu, and S. Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
[CrossRef]

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Goorskey, D. J.

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Huang, Q. J.

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Jiang, K.

W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010).
[CrossRef]

Joshi, A.

A. Joshi, W. Yang, and M. Xiao, “Hysteresis loop with controllable shape and direction in an optical ring cavity,” Phys. Rev. A 70, 041802(R) (2004).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

Khadka, U.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

Lee, R. K.

W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010).
[CrossRef]

Li, J.

L. Si, W. X. Yang, J. B. Liu, J. Li, and X. Yang, “Slow vector optics solitons in a cold five-level hyper V-type atomic system,” Opt. Express 17, 7771 (2009).
[CrossRef]

J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Physica D 228, 148 (2007).
[CrossRef]

Li, J. H.

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

X. Y. Lu, J. H. Li, J. B. Liu, and J. M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B 39, 5161 (2006).
[CrossRef]

Li, Y.

Y. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[CrossRef]

Liu, C.

C. Liu, S. Gong, X. Fan, and Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383–388 (2004).
[CrossRef]

Liu, J. B.

L. Si, W. X. Yang, J. B. Liu, J. Li, and X. Yang, “Slow vector optics solitons in a cold five-level hyper V-type atomic system,” Opt. Express 17, 7771 (2009).
[CrossRef]

X. Y. Lu, J. H. Li, J. B. Liu, and J. M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B 39, 5161 (2006).
[CrossRef]

Lu, X. Y.

X. Y. Lu, J. H. Li, J. B. Liu, and J. M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B 39, 5161 (2006).
[CrossRef]

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Lü, X. Y.

J. Wu, X. Y. Lü, and L. L. Zheng, “Controllable optical bistability and multistability in a double two-level atomic system,” J. Phys. B 43, 161003 (2010).
[CrossRef]

Lugiato, L. A.

P. Galatola, L. A. Lugiato, M. G. Porreca, and P. Tombesi, “Optical switching by variation of the squeezing phase,” Opt. Commun. 81, 175–178 (1991).
[CrossRef]

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[CrossRef]

Luo, J. M.

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

X. Y. Lu, J. H. Li, J. B. Liu, and J. M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B 39, 5161 (2006).
[CrossRef]

Ma, H.

X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005).
[CrossRef]

McCall, S. L.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Niu, Y. P.

Y. P. Niu, and S. Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
[CrossRef]

Pan, S. H.

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Porreca, M. G.

P. Galatola, L. A. Lugiato, M. G. Porreca, and P. Tombesi, “Optical switching by variation of the squeezing phase,” Opt. Commun. 81, 175–178 (1991).
[CrossRef]

Postan, A.

S. Singh, J. Rai, C. M. Bowden, and A. Postan, “Intrinsic optical bistability with squeezed vacuum,” Phys. Rev. A 45, 5160–5165 (1992).
[CrossRef]

Rai, J.

S. Singh, J. Rai, C. M. Bowden, and A. Postan, “Intrinsic optical bistability with squeezed vacuum,” Phys. Rev. A 45, 5160–5165 (1992).
[CrossRef]

Rubiera, A. I.

Y. F. Zhu, A. I. Rubiera, and M. Xiao, “Inversionless lasing and photon statistics in a V-type atomic system,” Phys. Rev. A 53, 1065–1071 (1996).
[CrossRef]

Scully, M. O.

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), p. 161.

Si, L.

W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010).
[CrossRef]

L. Si, W. X. Yang, J. B. Liu, J. Li, and X. Yang, “Slow vector optics solitons in a cold five-level hyper V-type atomic system,” Opt. Express 17, 7771 (2009).
[CrossRef]

Singh, S.

S. Singh, J. Rai, C. M. Bowden, and A. Postan, “Intrinsic optical bistability with squeezed vacuum,” Phys. Rev. A 45, 5160–5165 (1992).
[CrossRef]

Tan, S.

X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005).
[CrossRef]

Tombesi, P.

P. Galatola, L. A. Lugiato, M. G. Porreca, and P. Tombesi, “Optical switching by variation of the squeezing phase,” Opt. Commun. 81, 175–178 (1991).
[CrossRef]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Wang, H.

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).
[CrossRef]

Wang, Z. P.

Z. P. Wang, “Optical bistability via coherent and incoherent fields in an Er3+-doped yttrium-aluminum-garnet crystal,” Opt. Commun. 283, 3291–3295 (2010).
[CrossRef]

Wu, J.

J. Wu, X. Y. Lü, and L. L. Zheng, “Controllable optical bistability and multistability in a double two-level atomic system,” J. Phys. B 43, 161003 (2010).
[CrossRef]

Wu, Y.

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold atom media,” Phys. Rev. A 71, 053820 (2005).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-Lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu and L. Deng, “Ultra slow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

Y. Wu, and L. Deng, “Achieving multi-frequency mode entanglement with ultra-slow multi-wave mixing,” Opt. Lett. 29, 1144 (2004).
[CrossRef]

Y. Wu and L. Deng, “Ultra slow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064 (2004).
[CrossRef]

Xiao, M.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Hysteresis loop with controllable shape and direction in an optical ring cavity,” Phys. Rev. A 70, 041802(R) (2004).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).
[CrossRef]

Y. F. Zhu, A. I. Rubiera, and M. Xiao, “Inversionless lasing and photon statistics in a V-type atomic system,” Phys. Rev. A 53, 1065–1071 (1996).
[CrossRef]

Y. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[CrossRef]

Xu, Z.

X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005).
[CrossRef]

C. Liu, S. Gong, X. Fan, and Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383–388 (2004).
[CrossRef]

Xu, Z. Z.

Z. Chen, C. Du, S. Gong, and Z. Z. Xu, “Optical bistability via squeezed vacuum input,” Phys. Lett. A 259, 15–19 (1999).
[CrossRef]

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Yang, W.

A. Joshi, W. Yang, and M. Xiao, “Hysteresis loop with controllable shape and direction in an optical ring cavity,” Phys. Rev. A 70, 041802(R) (2004).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

Yang, W. X.

W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010).
[CrossRef]

L. Si, W. X. Yang, J. B. Liu, J. Li, and X. Yang, “Slow vector optics solitons in a cold five-level hyper V-type atomic system,” Opt. Express 17, 7771 (2009).
[CrossRef]

Yang, X.

W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010).
[CrossRef]

L. Si, W. X. Yang, J. B. Liu, J. Li, and X. Yang, “Slow vector optics solitons in a cold five-level hyper V-type atomic system,” Opt. Express 17, 7771 (2009).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-Lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Zhang, Y.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

Zheng, L. L.

J. Wu, X. Y. Lü, and L. L. Zheng, “Controllable optical bistability and multistability in a double two-level atomic system,” J. Phys. B 43, 161003 (2010).
[CrossRef]

Zhu, S. Y.

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef]

Zhu, Y. F.

Y. F. Zhu, A. I. Rubiera, and M. Xiao, “Inversionless lasing and photon statistics in a V-type atomic system,” Phys. Rev. A 53, 1065–1071 (1996).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), p. 161.

J. Mod. Opt. (1)

X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005).
[CrossRef]

J. Phys. B (2)

X. Y. Lu, J. H. Li, J. B. Liu, and J. M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B 39, 5161 (2006).
[CrossRef]

J. Wu, X. Y. Lü, and L. L. Zheng, “Controllable optical bistability and multistability in a double two-level atomic system,” J. Phys. B 43, 161003 (2010).
[CrossRef]

Opt. Commun. (3)

Z. P. Wang, “Optical bistability via coherent and incoherent fields in an Er3+-doped yttrium-aluminum-garnet crystal,” Opt. Commun. 283, 3291–3295 (2010).
[CrossRef]

P. Galatola, L. A. Lugiato, M. G. Porreca, and P. Tombesi, “Optical switching by variation of the squeezing phase,” Opt. Commun. 81, 175–178 (1991).
[CrossRef]

C. Liu, S. Gong, X. Fan, and Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383–388 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Lett. A (2)

Z. Chen, C. Du, S. Gong, and Z. Z. Xu, “Optical bistability via squeezed vacuum input,” Phys. Lett. A 259, 15–19 (1999).
[CrossRef]

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Phys. Rev. A (14)

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Hysteresis loop with controllable shape and direction in an optical ring cavity,” Phys. Rev. A 70, 041802(R) (2004).
[CrossRef]

Y. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[CrossRef]

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold atom media,” Phys. Rev. A 71, 053820 (2005).
[CrossRef]

W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010).
[CrossRef]

S. Singh, J. Rai, C. M. Bowden, and A. Postan, “Intrinsic optical bistability with squeezed vacuum,” Phys. Rev. A 45, 5160–5165 (1992).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).
[CrossRef]

Y. F. Zhu, A. I. Rubiera, and M. Xiao, “Inversionless lasing and photon statistics in a V-type atomic system,” Phys. Rev. A 53, 1065–1071 (1996).
[CrossRef]

Y. P. Niu, and S. Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-Lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Phys. Rev. Lett. (5)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

Y. Wu and L. Deng, “Ultra slow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Physica D (1)

J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Physica D 228, 148 (2007).
[CrossRef]

Other (1)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), p. 161.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of an open three-level Λ-type atomic system.

Fig. 2.
Fig. 2.

Schematic setup of a unidirectional ring cavity containing an atomic sample with the length L. EpI and EpT are the incident and transmitted fields, respectively. Ec, Ed, and Λ represent the coupling field, microwave driving field, and incoherent pumping, that are not circulating inside the cavity.

Fig. 3.
Fig. 3.

Output intensity |x| versus input intensity |y| for (a) open (J2=3J1, and r0=0.6γ), and (b) closed system J1=J2=r0=0), with different strength of SGC effect η. Other parameters used are γ31=γ32=30γ21=γ=3MHz, Gc=0.3γ, Ωd=4γ, Λ=0.5γ, ϕ=π/3, and C=50γ.

Fig. 4.
Fig. 4.

In the open atomic system, output intensity |x| versus input intensity |y|, (a) for different amplitudes of microwave-field Gd with Gc=0.3γ and (b) for different amplitudes of control field Gc with Gd=4γ. Other parameters used are the same as those in Fig. 3(a) except η=1.

Fig. 5.
Fig. 5.

In the open atomic system, output intensity |x| versus input intensity |y|, (a) for different values of cooperation parameter C with Λ=0.6γ and (b) for different incoherent pumping rate Λ with C=100γ. Other parameters used are the same as those in Fig. 3(a) except η=1.

Fig. 6.
Fig. 6.

In the open atomic system, output intensity |x| versus input intensity |y| (a) for different atomic exit rate r0 from the cavity with ϕ=π/3, (b) for different relative phase between probe and driving fields ϕ with r0=0.6γ. Other parameters used are the same as those in Fig. 3(a) except η=1.

Fig. 7.
Fig. 7.

(a) Absorption of probe field Im(ρ31) versus the detuning Δp for different atomic exit rates r0 from the cavity with ϕ=π/3. (b) Absorption of probe field Im(ρ31) versus the relative phase between probe and driving fields ϕ with r0=0.6γ. Other parameters used are the same as those in Fig. 3(a) except η=1.

Fig. 8.
Fig. 8.

Hyperfine structure diagram and related field-coupling scheme for a three-level Rb87 atom system.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Hint=(ΔpΔc)|22|+Δp|33|(Ωd|21|+Ωp|31|+Ωc|32|+H.c.),
ρ˙11=iΩd*ρ21iΩdρ12+iΩp*ρ31iΩpρ13Λρ11+γ21ρ22+γ31ρ33+J1r0ρ11,
ρ˙22=iΩdρ12iΩd*ρ21+iΩc*ρ32iΩcρ23γ21ρ22+γ32ρ33+J2r0ρ22,
ρ˙33=iΩcρ23iΩc*ρ32+iΩpρ13iΩp*ρ31+Λρ11(γ31+γ32)ρ33r0ρ33,
ρ˙12=iΩd*(ρ22ρ11)+[i(ΔpΔc)γ212]ρ12+iΩp*ρ32iΩcρ13+γ31γ32pηρ33,
ρ˙13=iΩp*(ρ33ρ11)+iΩd*ρ23iΩc*ρ12+[iΔp12(γ32+γ31)]ρ13,
ρ˙23=iΩdρ13iΩp*ρ21+iΩc*(ρ33ρ22)+[iΔc12(γ21+γ31+γ32)]ρ23,
σ˙11=iGd(σ21eiϕσ12eiϕ)+iGp(σ31σ13)+γ21σ22+γ31σ33+J1r0σ11,
σ˙22=iGd(σ12eiϕσ21eiϕ)+iGc(σ32σ23)γ21σ22+γ32σ33+J2r0σ22,
σ˙33=iGc(σ23σ32)+iGp(σ13σ31)+Λσ11(γ31+γ32)σ33r0σ33,
σ˙12=iGdeiϕ(σ22σ11)+i[(ΔpΔc)γ212]σ12+iGpσ32iGcσ13+γ31γ32pηeiϕσ33,
σ˙13=iGp(σ33σ11)+iGdσ23eiϕiGcσ12+[iΔp12(γ32+γ31)]σ13,
σ˙23=iGdσ13eiϕiGpσ21+iGc(σ33σ22)+[iΔc12(γ21+γ31+γ32)]σ23,
Ept+cEpz=iωp2ε0P(ωp),
Epz=iωp2cε0P(ωp).
Ep(L)=EpT/T,
Ep(0)=TEpI+REp(L),
y=xiCρ31,

Metrics