Abstract

A model of the 2μm amplified spontaneous emission (ASE) generation in the thulium-doped silica fibers pumped at 1575 nm is presented. Both Al-codoped and Al/Ge-codoped fiber core compositions are studied. The results show that the composition affects the relative slope efficiency of 10% and the bandwidth of 19% of the output ASE. Our results predict that the backward ASE is more powerful and spectrally broader compared to the forward ASE, which is in agreement with previous experiments. Using an asymmetric cavity feedback, 98% of the total output power can be directed in the backward ASE, but with the consequence of losing 50% of the bandwidth. Such sources are expected to deliver single-mode output with more than 70% slope and 39% power conversion efficiency.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription