Abstract

The method of transformation optics (TO) has recently been applied to the problem of manipulating the flow of surface plasmon polaritons (SPPs) along metal–dielectric interfaces. Although it allows one to theoretically control the flow in any manner desired, it usually leads to material properties not found in nature, thus making the realization of theoretical potentialities impractical. Therefore, artificial materials (called metamaterials), with both inhomogeneous and anisotropic electromagnetic response, are normally required to create the optical space designed with the TO method. In this paper, by utilizing linear coordinate transformations, we demonstrate that it is possible to maneuver the flow of SPPs in various ways within the realm of homogeneous metamaterials. Specifically, we describe how to construct a plasmon guider for a particular nonflat surface, an invisibility cloak that renders objects undetectable via SPPs, and a concentrator of the SPPs’ energy. The functionalities of these devices are visualized, and their performance is investigated, using finite-element simulations. The results presented show that the method of linear transformations is a simple, viable, and effective approach to the design of feasible plasmonic devices based on homogenous materials.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [CrossRef]
  3. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2010).
  4. P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
    [CrossRef]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef]
  6. M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
    [CrossRef]
  7. Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008).
    [CrossRef]
  8. T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
    [CrossRef]
  9. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
    [CrossRef]
  10. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishevand, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
    [CrossRef]
  11. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
    [CrossRef]
  12. W. Zhu, C. Ding, and X. Zhao, “A numerical method for designing acoustic cloak with homogeneous metamaterials,” Appl. Phys. Lett. 97, 131902 (2010).
    [CrossRef]
  13. M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
    [CrossRef]
  14. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010).
    [CrossRef]
  15. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010).
    [CrossRef]
  16. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappingss,” New J. Phys. 13, 033011 (2011).
    [CrossRef]
  17. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
    [CrossRef]
  18. M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: Cloak, concentrator and rotator for SPPs,” Opt. Express 18, 12027–12032 (2010).
    [CrossRef]
  19. M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
    [CrossRef]
  20. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5, 3293–3308 (2011).
    [CrossRef]
  21. Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83, 155422 (2011).
    [CrossRef]
  22. Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10, 4186–4191 (2010).
    [CrossRef]
  23. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33, 1342–1344 (2008).
    [CrossRef]
  24. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  25. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Maneuvering propagation of surface plasmon polaritons using complementary medium inserts,” IEEE Photon. J. 4, 741–747 (2012).
    [CrossRef]
  26. W. Li, J. Guan, Z. Sun, W. Wang, and Q. Zhang, “A near-perfect invisibility cloak constructed with homogeneous materials,” Opt. Express 17, 23410–23416 (2009).
    [CrossRef]
  27. W. Li, J. Guan, and W. Wang, “Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio,” J. Phys. D 44, 125401 (2011).
    [CrossRef]
  28. W. Zhu, I. Shadrivov, D. Powell, and Y. Kivshar, “Hiding in the corner,” Opt. Express 19, 20827–20832 (2011).
    [CrossRef]
  29. H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Reports 2, 255 (2012).
  30. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [CrossRef]
  31. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
    [CrossRef]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2012 (2)

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Maneuvering propagation of surface plasmon polaritons using complementary medium inserts,” IEEE Photon. J. 4, 741–747 (2012).
[CrossRef]

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Reports 2, 255 (2012).

2011 (9)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

W. Li, J. Guan, and W. Wang, “Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio,” J. Phys. D 44, 125401 (2011).
[CrossRef]

W. Zhu, I. Shadrivov, D. Powell, and Y. Kivshar, “Hiding in the corner,” Opt. Express 19, 20827–20832 (2011).
[CrossRef]

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappingss,” New J. Phys. 13, 033011 (2011).
[CrossRef]

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[CrossRef]

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5, 3293–3308 (2011).
[CrossRef]

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83, 155422 (2011).
[CrossRef]

2010 (5)

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10, 4186–4191 (2010).
[CrossRef]

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010).
[CrossRef]

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010).
[CrossRef]

W. Zhu, C. Ding, and X. Zhao, “A numerical method for designing acoustic cloak with homogeneous metamaterials,” Appl. Phys. Lett. 97, 131902 (2010).
[CrossRef]

M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: Cloak, concentrator and rotator for SPPs,” Opt. Express 18, 12027–12032 (2010).
[CrossRef]

2009 (5)

W. Li, J. Guan, Z. Sun, W. Wang, and Q. Zhang, “A near-perfect invisibility cloak constructed with homogeneous materials,” Opt. Express 17, 23410–23416 (2009).
[CrossRef]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[CrossRef]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishevand, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef]

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
[CrossRef]

2008 (4)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33, 1342–1344 (2008).
[CrossRef]

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
[CrossRef]

M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008).
[CrossRef]

2007 (1)

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[CrossRef]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Alitalo, P.

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
[CrossRef]

Aubry, A.

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83, 155422 (2011).
[CrossRef]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5, 3293–3308 (2011).
[CrossRef]

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10, 4186–4191 (2010).
[CrossRef]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Bartal, G.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010).
[CrossRef]

Chan, C. T.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Chen, H.

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Reports 2, 255 (2012).

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
[CrossRef]

Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008).
[CrossRef]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cui, T. J.

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2010).

Cummer, S. A.

M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Davis, C. C.

Ding, C.

W. Zhu, C. Ding, and X. Zhao, “A numerical method for designing acoustic cloak with homogeneous metamaterials,” Appl. Phys. Lett. 97, 131902 (2010).
[CrossRef]

Enoch, S.

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef]

M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: Cloak, concentrator and rotator for SPPs,” Opt. Express 18, 12027–12032 (2010).
[CrossRef]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[CrossRef]

Farhat, M.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[CrossRef]

García-Vidal, F. J.

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappingss,” New J. Phys. 13, 033011 (2011).
[CrossRef]

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010).
[CrossRef]

Guan, J.

W. Li, J. Guan, and W. Wang, “Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio,” J. Phys. D 44, 125401 (2011).
[CrossRef]

W. Li, J. Guan, Z. Sun, W. Wang, and Q. Zhang, “A near-perfect invisibility cloak constructed with homogeneous materials,” Opt. Express 17, 23410–23416 (2009).
[CrossRef]

Guenneau, S.

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef]

M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: Cloak, concentrator and rotator for SPPs,” Opt. Express 18, 12027–12032 (2010).
[CrossRef]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[CrossRef]

Han, D.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Huidobro, P. A.

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappingss,” New J. Phys. 13, 033011 (2011).
[CrossRef]

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010).
[CrossRef]

Hung, Y. J.

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Kadic, M.

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef]

M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: Cloak, concentrator and rotator for SPPs,” Opt. Express 18, 12027–12032 (2010).
[CrossRef]

Kildishevand, A. V.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishevand, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef]

Kivshar, Y.

Kong, J. A.

Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008).
[CrossRef]

Lai, Y.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Lei, D. Y.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5, 3293–3308 (2011).
[CrossRef]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

Li, W.

W. Li, J. Guan, and W. Wang, “Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio,” J. Phys. D 44, 125401 (2011).
[CrossRef]

W. Li, J. Guan, Z. Sun, W. Wang, and Q. Zhang, “A near-perfect invisibility cloak constructed with homogeneous materials,” Opt. Express 17, 23410–23416 (2009).
[CrossRef]

Liu, R.

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2010).

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Liu, Y.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[CrossRef]

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010).
[CrossRef]

Luo, X.

Luo, Y.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83, 155422 (2011).
[CrossRef]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10, 4186–4191 (2010).
[CrossRef]

Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008).
[CrossRef]

Ma, H.

Maier, S. A.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5, 3293–3308 (2011).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Martín-Moreno, L.

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappingss,” New J. Phys. 13, 033011 (2011).
[CrossRef]

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010).
[CrossRef]

Mikkelsen, M. H.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Nesterov, M. L.

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappingss,” New J. Phys. 13, 033011 (2011).
[CrossRef]

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010).
[CrossRef]

Ng, J.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Pendry, J. B.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5, 3293–3308 (2011).
[CrossRef]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83, 155422 (2011).
[CrossRef]

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10, 4186–4191 (2010).
[CrossRef]

M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Powell, D.

Premaratne, M.

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Maneuvering propagation of surface plasmon polaritons using complementary medium inserts,” IEEE Photon. J. 4, 741–747 (2012).
[CrossRef]

Rahm, M.

M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Ramakrishna, S. A.

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef]

Ran, L.

Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008).
[CrossRef]

Roberts, D. R.

M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Rukhlenko, I. D.

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Maneuvering propagation of surface plasmon polaritons using complementary medium inserts,” IEEE Photon. J. 4, 741–747 (2012).
[CrossRef]

Schurig, D.

M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Shadrivov, I.

Shalaev, V. M.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishevand, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef]

Smith, D. R.

M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2010).

Smolyaninov, I. I.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishevand, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33, 1342–1344 (2008).
[CrossRef]

Smolyaninova, V. N.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishevand, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Sun, Z.

Tretyakov, S.

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
[CrossRef]

Valentine, J.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[CrossRef]

Wang, W.

W. Li, J. Guan, and W. Wang, “Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio,” J. Phys. D 44, 125401 (2011).
[CrossRef]

W. Li, J. Guan, Z. Sun, W. Wang, and Q. Zhang, “A near-perfect invisibility cloak constructed with homogeneous materials,” Opt. Express 17, 23410–23416 (2009).
[CrossRef]

Xiao, J.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Yang, T.

Zentgraf, T.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[CrossRef]

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010).
[CrossRef]

Zhang, B.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Zhang, J.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008).
[CrossRef]

Zhang, Q.

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Zhang, X.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[CrossRef]

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010).
[CrossRef]

Zhang, Z.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Zhao, X.

W. Zhu, C. Ding, and X. Zhao, “A numerical method for designing acoustic cloak with homogeneous metamaterials,” Appl. Phys. Lett. 97, 131902 (2010).
[CrossRef]

Zheng, B.

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Reports 2, 255 (2012).

Zhu, W.

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Maneuvering propagation of surface plasmon polaritons using complementary medium inserts,” IEEE Photon. J. 4, 741–747 (2012).
[CrossRef]

W. Zhu, I. Shadrivov, D. Powell, and Y. Kivshar, “Hiding in the corner,” Opt. Express 19, 20827–20832 (2011).
[CrossRef]

W. Zhu, C. Ding, and X. Zhao, “A numerical method for designing acoustic cloak with homogeneous metamaterials,” Appl. Phys. Lett. 97, 131902 (2010).
[CrossRef]

ACS Nano (2)

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5, 3293–3308 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

W. Zhu, C. Ding, and X. Zhao, “A numerical method for designing acoustic cloak with homogeneous metamaterials,” Appl. Phys. Lett. 97, 131902 (2010).
[CrossRef]

IEEE Photon. J. (1)

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Maneuvering propagation of surface plasmon polaritons using complementary medium inserts,” IEEE Photon. J. 4, 741–747 (2012).
[CrossRef]

J. Phys. D (1)

W. Li, J. Guan, and W. Wang, “Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio,” J. Phys. D 44, 125401 (2011).
[CrossRef]

Mater. Today (1)

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
[CrossRef]

Nano Lett. (3)

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010).
[CrossRef]

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010).
[CrossRef]

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10, 4186–4191 (2010).
[CrossRef]

Nat. Commun. (1)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Nat. Nanotechnol. (1)

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[CrossRef]

New J. Phys. (2)

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[CrossRef]

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappingss,” New J. Phys. 13, 033011 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Photon. Nanostr. Fundam. Appl. (1)

M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Phys. Rev. B (3)

Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008).
[CrossRef]

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83, 155422 (2011).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (4)

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[CrossRef]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishevand, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef]

Sci. Reports (1)

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Reports 2, 255 (2012).

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

Other (2)

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2010).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Transformation of flat metal–dielectric interface y=0 to the interface with (a) trapezoid protrusion and (b) trapezoid groove. The trapezoid regions have bases 2a and 2b and height h1. The cross section of original space filled with air is a trapezium of height h2.

Fig. 2.
Fig. 2.

Snapshots of magnetic field of SPP modes bending around [(a), (b)] a trapezoid protrusion and [(c), (d)] a trapezoid groove with and without transformation media. The geometric parameters are h1=h2/2=2μm for protrusion and h1=h2=2μm for groove; in both cases, a=1.5μm and b=3μm (see Fig. 1). For other parameters, refer to the text.

Fig. 3.
Fig. 3.

Transformation of (a) background space (gray square with orange rhombus) to (b) invisibility cloak with a square hiding region (shaded in green). The hiding region is expanded from a straight line segment 2c, which, in turn, is stretched from a the shorter segment of length 2a in the background space.

Fig. 4.
Fig. 4.

Snapshots of magnetic field in planes y=0 and z=0 for SPP scattering at (a) metallic bar and (b) metallic bar inside the invisibility cloak. Arrows show the propagation direction of SPPs. The geometric parameters are a=0.5μm, b=5μm, and c=3μm (see Fig. 3); the wavelength of incident SPPs is 1.55 μm.

Fig. 5.
Fig. 5.

Transformation of (a) a square background-space region of area 2b2 to (b) plasmonic concentrator with a working area 2c2 (shaded in purple). Each region in (a) is mapped to the region of the same color in (b).

Fig. 6.
Fig. 6.

Snapshot of magnetic field of SPPs propagating through a 6 μm high plasmonic concentrator (the propagation direction is shown by an arrow). The geometric parameters are a=3μm, b=5μm, and c=1μm (see Fig. 5); the wavelength of incident SPPs is 1.55 μm.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

{x=a1x+b1y+c1z+d1,y=a2x+b2y+c2z+d2,z=a3x+b3y+c3z+d3,
ε=JεJTdetJ=εbΔM,μ=JμJTdetJ=μbΔM,
Δ=|a1b1c1a2b2c2a3b3c3|.
εm(ω)=εωp2ω(ω+iγ),
x=x,z=z,
y={h2h1h2y+b|x|bah2,a<|x|<b,h2h1h2y,|x|a.
ε=μ={(h2h2h1sgn(x)h22(ba)(h2h1)0sgn(x)h22(ba)(h2h1)(ba)2(h2h1)2+h24h2(h2h1)(ba)2000h2h2h1),a<|x|<b,(h2h2h1000h2h1h2000h2h2h1),|x|a,
ε={(h2h2h1sgn(x)h22(ba)(h2h1)sgn(x)h22(ba)(h2h1)(ba)2(h2h1)2+h24h2(h2h1)(ba)2),a<|x|<b,(h2h2h100h2h1h2),|x|a,
x=bcbax+caba(by)sgn(xy),y=y,z=z
x=cax,y=c(|x|a1)sgny+bcby,z=z
ε=μ=((ca)2+(cb)2(ab)(cb)sgn(xy)cacb0sgn(xy)cacbabcb000abcb)
ε=μ=(bca(bc)sgn(xy)bca(cb)0sgn(xy)bca(cb)b2c2+a2(bc)2abc(bc)000abc(bc))
x=bcbax+acab(by)sgn(xy),y=y,z=z
x=cax,y=bcbay+bacab(1|x|asgny),z=z
x=(c/a)x,y=(c/a)y,z=z
ε=μ=((ac)2+(bc)2(ba)(bc)sgn(xy)acbc0sgn(xy)acbcbabc000babc)
ε=μ=(c(ba)a(bc)sgn(xy)b(ac)a(bc)0sgn(xy)b(ac)a(bc)a2(bc)2+b2(ac)2ac(ba)(bc)000a(ba)c(bc))
ε=μ=(10001000(a/c)2)

Metrics