Abstract

Metallic nanoparticles organized in regular arrays exhibit an extraordinary spectral feature that arises from electromagnetic coupling between localized surface plasmons and constructive interference from diffracted far-field radiation. A rapid semianalytical description of coupling between dipoles and scattering modes is applied to examine the influence of nanoparticle size, dielectric, and interparticle separation on the occurrence, resonant wavelength, and intensity of the extraordinary spectral feature. Introducing a dynamic polarizability that includes higher-order electric poles into the description accurately characterizes plasmon resonances of larger particles. Previously unrecognized patterns and periodic variations in the extraordinary feature were observed to result from modulations in polarizability, as well as from interference of scattered modes that were distinguishable for the first time using the rapid semianalytic solution. Streamlined rational design of metamaterials with optimum optical properties using the rapid semianalytic coupled dipole approximation is considered.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
    [CrossRef]
  2. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
    [CrossRef]
  3. A. Csaki, R. Möller, and W. Fritzsche, “Gold nanoparticles as novel label for DNA diagnostics,” Expert Rev. Mol. Diagn. 2, 187–193 (2002).
    [CrossRef] [PubMed]
  4. C. Gulmann, K. M. Sheehan, E. W. Kay, L. A. Liotta, and E. F. Petricoin III, “Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer,” J. Pathol. Bacteriol. 208, 595–606 (2006).
    [CrossRef]
  5. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
    [CrossRef]
  6. I. Willner and B. Willner, “Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications,” Pure Appl. Chem. 74, 1773–1783 (2002).
    [CrossRef]
  7. X. Liu, L. Zhao, H. Shen, H. Xu, and L. Lu, “Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives,” Talanta 83, 1023–1029 (2011).
    [CrossRef]
  8. J. Li, X. Hu, Y. Gu, and Q. Gong, “Tunable wavelength-division multiplexing based on metallic nanoparticle arrays,” Opt. Lett. 35, 4051–4053 (2010).
    [CrossRef] [PubMed]
  9. S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010).
    [CrossRef] [PubMed]
  10. S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
    [CrossRef] [PubMed]
  11. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
    [CrossRef]
  12. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. 107, 7343–7350 (2003).
    [CrossRef]
  13. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
    [CrossRef] [PubMed]
  14. M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114, 7496–7501 (2010).
    [CrossRef]
  15. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
    [CrossRef]
  16. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
    [CrossRef]
  17. Y. Chu, E. Schonbrun, T. Ang, and K. B. Crozier, “Experimental observation of narrow surface resonances in gold nanoparticle array,” Appl. Phys. Lett. 93, 181108 (2008).
    [CrossRef]
  18. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized surface plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
    [CrossRef] [PubMed]
  19. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle array,” J. Chem. Phys. 121, 12606–12612 (2004).
    [CrossRef] [PubMed]
  20. B. Auguie and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34, 401–403 (2009).
    [CrossRef] [PubMed]
  21. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical Response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
    [CrossRef]
  22. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  23. F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112, 20233–20240 (2008).
    [CrossRef]
  24. D. K. Roper, B. Taylor, W. Ahn, and Y. Dall’Asen, “Optoplasmonic gold nanoparticle assembly for sensing, spectroscopy and heat transfer,” presented at International Symposium on Spectral Sensing Research 2008, Hoboken, N.J., 23–27 June 2008.
  25. D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
    [CrossRef]
  26. G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
    [CrossRef]
  27. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [CrossRef]
  28. J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
    [CrossRef]
  29. D. K. Roper, W. Ahn, P. Blake, and B. Taylor, “Extraordinary plasmon coupling in Au NP arrays for enhanced second harmonic generation,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.
  30. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
    [CrossRef]
  31. D. K. Roper, P. Blake, W. Ahn, B. Harbin, G. Jang, and B. Taylor, “Subwavelength nanoparticle ordered structures for bio, micro, & spectral analysis,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.
  32. D. K. Roper, W. Ahn, P. Blake, B. Taylor, and A. Dall’Asen, “Subwavelength NP ordered structures for enhanced sensing,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.
  33. P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
    [CrossRef]
  34. D. K. Roper, P. Blake, W. Ahn, B. Taylor, A. G. Russell, and G. Jang, “Radiative photon-plasmon coupling for enhanced energy conversion,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.
  35. C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18, 3187–3198 (2010).
    [CrossRef] [PubMed]
  36. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
    [CrossRef] [PubMed]
  37. D. K. Roper, “Tuning plasmon-coupled radiation in nanolattices to bandgaps in the near-IR,” presented at the ACS Symposium, Optical Science and Emerging Energy Technologies, ACS Spring Meeting, San Francisco, California, 22 March 2010.
  38. D. K. Roper, W. Ahn, P. Blake, B. Harbin, and G. Jang, “Tuning plasmon-coupled radiation in nanolattices to semiconductor bandgaps,” presented at the 239th ACS National Meeting, San Francisco, California, 21–25 March 2010.
  39. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410(2011).
    [CrossRef] [PubMed]

2011 (3)

X. Liu, L. Zhao, H. Shen, H. Xu, and L. Lu, “Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives,” Talanta 83, 1023–1029 (2011).
[CrossRef]

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410(2011).
[CrossRef] [PubMed]

2010 (7)

C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18, 3187–3198 (2010).
[CrossRef] [PubMed]

J. Li, X. Hu, Y. Gu, and Q. Gong, “Tunable wavelength-division multiplexing based on metallic nanoparticle arrays,” Opt. Lett. 35, 4051–4053 (2010).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical Response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114, 7496–7501 (2010).
[CrossRef]

2009 (2)

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

B. Auguie and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34, 401–403 (2009).
[CrossRef] [PubMed]

2008 (4)

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112, 20233–20240 (2008).
[CrossRef]

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

Y. Chu, E. Schonbrun, T. Ang, and K. B. Crozier, “Experimental observation of narrow surface resonances in gold nanoparticle array,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized surface plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
[CrossRef] [PubMed]

2006 (3)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

C. Gulmann, K. M. Sheehan, E. W. Kay, L. A. Liotta, and E. F. Petricoin III, “Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer,” J. Pathol. Bacteriol. 208, 595–606 (2006).
[CrossRef]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

2004 (1)

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle array,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

2003 (3)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. 107, 7343–7350 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

2002 (2)

I. Willner and B. Willner, “Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications,” Pure Appl. Chem. 74, 1773–1783 (2002).
[CrossRef]

A. Csaki, R. Möller, and W. Fritzsche, “Gold nanoparticles as novel label for DNA diagnostics,” Expert Rev. Mol. Diagn. 2, 187–193 (2002).
[CrossRef] [PubMed]

2000 (1)

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

1999 (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

1989 (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

1908 (1)

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Ackermann, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

Ahn, W.

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

D. K. Roper, P. Blake, W. Ahn, B. Harbin, G. Jang, and B. Taylor, “Subwavelength nanoparticle ordered structures for bio, micro, & spectral analysis,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, and B. Taylor, “Extraordinary plasmon coupling in Au NP arrays for enhanced second harmonic generation,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

D. K. Roper, B. Taylor, W. Ahn, and Y. Dall’Asen, “Optoplasmonic gold nanoparticle assembly for sensing, spectroscopy and heat transfer,” presented at International Symposium on Spectral Sensing Research 2008, Hoboken, N.J., 23–27 June 2008.

D. K. Roper, W. Ahn, P. Blake, B. Harbin, and G. Jang, “Tuning plasmon-coupled radiation in nanolattices to semiconductor bandgaps,” presented at the 239th ACS National Meeting, San Francisco, California, 21–25 March 2010.

D. K. Roper, P. Blake, W. Ahn, B. Taylor, A. G. Russell, and G. Jang, “Radiative photon-plasmon coupling for enhanced energy conversion,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, B. Taylor, and A. Dall’Asen, “Subwavelength NP ordered structures for enhanced sensing,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410(2011).
[CrossRef] [PubMed]

Ang, T.

Y. Chu, E. Schonbrun, T. Ang, and K. B. Crozier, “Experimental observation of narrow surface resonances in gold nanoparticle array,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Auguie, B.

Barnes, W. L.

Beck, F. J.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

Belcher, A. M.

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
[CrossRef] [PubMed]

Bhaviripudi, S.

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
[CrossRef] [PubMed]

Blake, P.

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

D. K. Roper, W. Ahn, P. Blake, and B. Taylor, “Extraordinary plasmon coupling in Au NP arrays for enhanced second harmonic generation,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

D. K. Roper, P. Blake, W. Ahn, B. Harbin, G. Jang, and B. Taylor, “Subwavelength nanoparticle ordered structures for bio, micro, & spectral analysis,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, B. Harbin, and G. Jang, “Tuning plasmon-coupled radiation in nanolattices to semiconductor bandgaps,” presented at the 239th ACS National Meeting, San Francisco, California, 21–25 March 2010.

D. K. Roper, W. Ahn, P. Blake, B. Taylor, and A. Dall’Asen, “Subwavelength NP ordered structures for enhanced sensing,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

D. K. Roper, P. Blake, W. Ahn, B. Taylor, A. G. Russell, and G. Jang, “Radiative photon-plasmon coupling for enhanced energy conversion,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

Burrows, C. P.

Catchpole, K. R.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical Response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Choi, J. W.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010).
[CrossRef] [PubMed]

Chu, Y.

Y. Chu, E. Schonbrun, T. Ang, and K. B. Crozier, “Experimental observation of narrow surface resonances in gold nanoparticle array,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Chumanov, G.

M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114, 7496–7501 (2010).
[CrossRef]

Cialla, D.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Ang, and K. B. Crozier, “Experimental observation of narrow surface resonances in gold nanoparticle array,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Csaki, A.

A. Csaki, R. Möller, and W. Fritzsche, “Gold nanoparticles as novel label for DNA diagnostics,” Expert Rev. Mol. Diagn. 2, 187–193 (2002).
[CrossRef] [PubMed]

Cui, Y.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010).
[CrossRef] [PubMed]

Dall’Asen, A.

D. K. Roper, W. Ahn, P. Blake, B. Taylor, and A. Dall’Asen, “Subwavelength NP ordered structures for enhanced sensing,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

Dall’Asen, A. G.

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

Dall’Asen, Y.

D. K. Roper, B. Taylor, W. Ahn, and Y. Dall’Asen, “Optoplasmonic gold nanoparticle assembly for sensing, spectroscopy and heat transfer,” presented at International Symposium on Spectral Sensing Research 2008, Hoboken, N.J., 23–27 June 2008.

Dörfer, T.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

Dresselhaus, M. S.

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical Response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Fritzsche, W.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

A. Csaki, R. Möller, and W. Fritzsche, “Gold nanoparticles as novel label for DNA diagnostics,” Expert Rev. Mol. Diagn. 2, 187–193 (2002).
[CrossRef] [PubMed]

Garnett, E.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010).
[CrossRef] [PubMed]

Gedney, S. D.

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410(2011).
[CrossRef] [PubMed]

Gong, Q.

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized surface plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Gu, Y.

Gulmann, C.

C. Gulmann, K. M. Sheehan, E. W. Kay, L. A. Liotta, and E. F. Petricoin III, “Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer,” J. Pathol. Bacteriol. 208, 595–606 (2006).
[CrossRef]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Harbin, B.

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

D. K. Roper, P. Blake, W. Ahn, B. Harbin, G. Jang, and B. Taylor, “Subwavelength nanoparticle ordered structures for bio, micro, & spectral analysis,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, B. Harbin, and G. Jang, “Tuning plasmon-coupled radiation in nanolattices to semiconductor bandgaps,” presented at the 239th ACS National Meeting, San Francisco, California, 21–25 March 2010.

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410(2011).
[CrossRef] [PubMed]

Hering, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

Hu, L.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010).
[CrossRef] [PubMed]

Hu, X.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

Jang, G.

D. K. Roper, P. Blake, W. Ahn, B. Taylor, A. G. Russell, and G. Jang, “Radiative photon-plasmon coupling for enhanced energy conversion,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, B. Harbin, and G. Jang, “Tuning plasmon-coupled radiation in nanolattices to semiconductor bandgaps,” presented at the 239th ACS National Meeting, San Francisco, California, 21–25 March 2010.

D. K. Roper, P. Blake, W. Ahn, B. Harbin, G. Jang, and B. Taylor, “Subwavelength nanoparticle ordered structures for bio, micro, & spectral analysis,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

Jeong, S.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010).
[CrossRef] [PubMed]

Kall, M.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Kay, E. W.

C. Gulmann, K. M. Sheehan, E. W. Kay, L. A. Liotta, and E. F. Petricoin III, “Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer,” J. Pathol. Bacteriol. 208, 595–606 (2006).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. 107, 7343–7350 (2003).
[CrossRef]

Kinnan, M. K.

M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114, 7496–7501 (2010).
[CrossRef]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Kong, J.

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
[CrossRef] [PubMed]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized surface plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

Lee, H. R.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

Li, J.

Li, Z. Y.

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112, 20233–20240 (2008).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

Liotta, L. A.

C. Gulmann, K. M. Sheehan, E. W. Kay, L. A. Liotta, and E. F. Petricoin III, “Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer,” J. Pathol. Bacteriol. 208, 595–606 (2006).
[CrossRef]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410(2011).
[CrossRef] [PubMed]

Liu, X.

X. Liu, L. Zhao, H. Shen, H. Xu, and L. Lu, “Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives,” Talanta 83, 1023–1029 (2011).
[CrossRef]

Liu, Y.

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112, 20233–20240 (2008).
[CrossRef]

Lu, L.

X. Liu, L. Zhao, H. Shen, H. Xu, and L. Lu, “Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives,” Talanta 83, 1023–1029 (2011).
[CrossRef]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical Response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Mattheis, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Mile, E.

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
[CrossRef] [PubMed]

Mokkapati, S.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

Möller, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

A. Csaki, R. Möller, and W. Fritzsche, “Gold nanoparticles as novel label for DNA diagnostics,” Expert Rev. Mol. Diagn. 2, 187–193 (2002).
[CrossRef] [PubMed]

Obermann, J.

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Petricoin, E. F.

C. Gulmann, K. M. Sheehan, E. W. Kay, L. A. Liotta, and E. F. Petricoin III, “Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer,” J. Pathol. Bacteriol. 208, 595–606 (2006).
[CrossRef]

Polman, A.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

Popp, J.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical Response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Roden, J. A.

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Roper, D. K.

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

D. K. Roper, P. Blake, W. Ahn, B. Harbin, G. Jang, and B. Taylor, “Subwavelength nanoparticle ordered structures for bio, micro, & spectral analysis,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, and B. Taylor, “Extraordinary plasmon coupling in Au NP arrays for enhanced second harmonic generation,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

D. K. Roper, “Tuning plasmon-coupled radiation in nanolattices to bandgaps in the near-IR,” presented at the ACS Symposium, Optical Science and Emerging Energy Technologies, ACS Spring Meeting, San Francisco, California, 22 March 2010.

D. K. Roper, P. Blake, W. Ahn, B. Taylor, A. G. Russell, and G. Jang, “Radiative photon-plasmon coupling for enhanced energy conversion,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, B. Taylor, and A. Dall’Asen, “Subwavelength NP ordered structures for enhanced sensing,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

D. K. Roper, W. Ahn, P. Blake, B. Harbin, and G. Jang, “Tuning plasmon-coupled radiation in nanolattices to semiconductor bandgaps,” presented at the 239th ACS National Meeting, San Francisco, California, 21–25 March 2010.

D. K. Roper, B. Taylor, W. Ahn, and Y. Dall’Asen, “Optoplasmonic gold nanoparticle assembly for sensing, spectroscopy and heat transfer,” presented at International Symposium on Spectral Sensing Research 2008, Hoboken, N.J., 23–27 June 2008.

Rösch, P.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

Russell, A. G.

D. K. Roper, P. Blake, W. Ahn, B. Taylor, A. G. Russell, and G. Jang, “Radiative photon-plasmon coupling for enhanced energy conversion,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

Schatz, G. C.

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle array,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. 107, 7343–7350 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized surface plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Schneidewind, H.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Ang, and K. B. Crozier, “Experimental observation of narrow surface resonances in gold nanoparticle array,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical Response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Sheehan, K. M.

C. Gulmann, K. M. Sheehan, E. W. Kay, L. A. Liotta, and E. F. Petricoin III, “Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer,” J. Pathol. Bacteriol. 208, 595–606 (2006).
[CrossRef]

Shen, H.

X. Liu, L. Zhao, H. Shen, H. Xu, and L. Lu, “Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives,” Talanta 83, 1023–1029 (2011).
[CrossRef]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Steiner, S. A.

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
[CrossRef] [PubMed]

Taylor, B.

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

D. K. Roper, P. Blake, W. Ahn, B. Harbin, G. Jang, and B. Taylor, “Subwavelength nanoparticle ordered structures for bio, micro, & spectral analysis,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, and B. Taylor, “Extraordinary plasmon coupling in Au NP arrays for enhanced second harmonic generation,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

D. K. Roper, B. Taylor, W. Ahn, and Y. Dall’Asen, “Optoplasmonic gold nanoparticle assembly for sensing, spectroscopy and heat transfer,” presented at International Symposium on Spectral Sensing Research 2008, Hoboken, N.J., 23–27 June 2008.

D. K. Roper, P. Blake, W. Ahn, B. Taylor, A. G. Russell, and G. Jang, “Radiative photon-plasmon coupling for enhanced energy conversion,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, B. Taylor, and A. Dall’Asen, “Subwavelength NP ordered structures for enhanced sensing,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410(2011).
[CrossRef] [PubMed]

Willner, B.

I. Willner and B. Willner, “Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications,” Pure Appl. Chem. 74, 1773–1783 (2002).
[CrossRef]

Willner, I.

I. Willner and B. Willner, “Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications,” Pure Appl. Chem. 74, 1773–1783 (2002).
[CrossRef]

Xia, Y.

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112, 20233–20240 (2008).
[CrossRef]

Xu, H.

X. Liu, L. Zhao, H. Shen, H. Xu, and L. Lu, “Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives,” Talanta 83, 1023–1029 (2011).
[CrossRef]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Zare, A. T.

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
[CrossRef] [PubMed]

Zhao, L.

X. Liu, L. Zhao, H. Shen, H. Xu, and L. Lu, “Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives,” Talanta 83, 1023–1029 (2011).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. 107, 7343–7350 (2003).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zhou, F.

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112, 20233–20240 (2008).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle array,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Appl. Phys. Lett. (3)

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

Y. Chu, E. Schonbrun, T. Ang, and K. B. Crozier, “Experimental observation of narrow surface resonances in gold nanoparticle array,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Expert Rev. Mol. Diagn. (1)

A. Csaki, R. Möller, and W. Fritzsche, “Gold nanoparticles as novel label for DNA diagnostics,” Expert Rev. Mol. Diagn. 2, 187–193 (2002).
[CrossRef] [PubMed]

IEEE Sens. J. (2)

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle array,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

J. Pathol. Bacteriol. (1)

C. Gulmann, K. M. Sheehan, E. W. Kay, L. A. Liotta, and E. F. Petricoin III, “Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer,” J. Pathol. Bacteriol. 208, 595–606 (2006).
[CrossRef]

J. Phys. Chem. (1)

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. 107, 7343–7350 (2003).
[CrossRef]

J. Phys. Chem. B (4)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. Phys. Chem. C (2)

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112, 20233–20240 (2008).
[CrossRef]

M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114, 7496–7501 (2010).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Nano Lett. (1)

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (2)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical Response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized surface plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Pure Appl. Chem. (1)

I. Willner and B. Willner, “Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications,” Pure Appl. Chem. 74, 1773–1783 (2002).
[CrossRef]

Science (1)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410(2011).
[CrossRef] [PubMed]

Talanta (1)

X. Liu, L. Zhao, H. Shen, H. Xu, and L. Lu, “Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives,” Talanta 83, 1023–1029 (2011).
[CrossRef]

Other (7)

D. K. Roper, “Tuning plasmon-coupled radiation in nanolattices to bandgaps in the near-IR,” presented at the ACS Symposium, Optical Science and Emerging Energy Technologies, ACS Spring Meeting, San Francisco, California, 22 March 2010.

D. K. Roper, W. Ahn, P. Blake, B. Harbin, and G. Jang, “Tuning plasmon-coupled radiation in nanolattices to semiconductor bandgaps,” presented at the 239th ACS National Meeting, San Francisco, California, 21–25 March 2010.

D. K. Roper, P. Blake, W. Ahn, B. Harbin, G. Jang, and B. Taylor, “Subwavelength nanoparticle ordered structures for bio, micro, & spectral analysis,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, W. Ahn, P. Blake, B. Taylor, and A. Dall’Asen, “Subwavelength NP ordered structures for enhanced sensing,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

D. K. Roper, P. Blake, W. Ahn, B. Taylor, A. G. Russell, and G. Jang, “Radiative photon-plasmon coupling for enhanced energy conversion,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.

D. K. Roper, B. Taylor, W. Ahn, and Y. Dall’Asen, “Optoplasmonic gold nanoparticle assembly for sensing, spectroscopy and heat transfer,” presented at International Symposium on Spectral Sensing Research 2008, Hoboken, N.J., 23–27 June 2008.

D. K. Roper, W. Ahn, P. Blake, and B. Taylor, “Extraordinary plasmon coupling in Au NP arrays for enhanced second harmonic generation,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Comparison of spectral extinction for single Au nanoparticles with radii (a) 110 and (b)  150 nm calculated using the rsa-CDA with quadrupole polarizability (solid curves) and Mie theory (dashed curves).

Fig. 2
Fig. 2

Comparison between the full FDTD (dashed curve) and rsa-CDA, including the quadrupole polarizability term (solid curve), simulated spectra for a square array of Au nanoparticles with radius of 110 nm and a particle separation of 670 nm .

Fig. 3
Fig. 3

Radiative scattering patterns of single particles for individual electric (a) dipole and (b) quadrupole LSPR modes.

Fig. 4
Fig. 4

Imaginary component of polarizability (Eq. (4)) for individual Au particle with radii of (a) 25–80 and (b)  50 250 nm as a function of incident wavelength. The two curves in Fig. 4b correspond to the loci of maximum dipole (solid) and quadrupole (dashed) polarizability.

Fig. 5
Fig. 5

Coupled peak location as a function of interparticle separation for an Au array of 65 nm radius particles. Dotted curve shows 1 1 linear relation. Inset: extinction spectra at specific lattice constants.

Fig. 6
Fig. 6

Coupled peak location with a particle separation of 550 nm and varying particle radius. Dotted line shows overlapping contributions from dipole and quadrupole modes to the coupled peak. Inset: plot showing individual spectra of the coupled peak for various particle radii.

Fig. 7
Fig. 7

Maximum extinction for the entire incident wavelength range of each individual parametric change for (a) Au, (b) Cu, and (c) Ag nanoparticles. Higher extinction (light areas) gives geometries that allow constructive coupling. Inset: maximum extinction efficiencies for 60 to 80 nm particles, all of which have 600 nm lattice constant (D).

Fig. 8
Fig. 8

Shows “center” particle (blackened) located at the origin with the electric field in the x direction and the wave vector perpendicular to the array. Particles corresponding to { 1 , 1 } mode (green), { 0 , 2 } mode (yellow), etc., are identified in the array.

Fig. 9
Fig. 9

Au maximum extinction with only (a) axial, (b) diagonal, and (c) OAD contributions considered.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α = 4 π 3 i R 3 2 x 3 a 1 ,
a n = m ψ n ( m x ) ψ n ( x ) ψ n ( x ) ψ n ( m x ) m ψ n ( m x ) ξ n ( x ) ξ n ( x ) ψ n ( m x ) ,
a n = i ( n + 1 ) n ( 2 n + 1 ) x 2 n + 1 1 2 3 2 ( 2 n 1 ) 2 u n ( m 2 v n ) m 2 + [ n + 1 n ] w n ,
C ext = 4 π k Im ( α 1 α S ) ,
S = e i k r i j 4 π ε 0 i j ( 1 i k r i j ) ( 3 cos 2 θ i j 1 ) r i j 3 + k 2 sin 2 θ i j r i j ,
α = 4 π ( 3 i R 3 2 x 3 a 1 + 10 i R 3 3 x 3 a 2 ) ,
λ = r i f n ,

Metrics