Abstract

We developed a self-consistent analytical approach to describe the optical response of a magnetoplasmonic heterostructure upon surface plasmon polariton (SPP) excitation. The approach is based on the effective susceptibility concept in the frame of the Green’s function method and accounts for the local-field effects in the system. The formalism was applied to describe the polar Kerr effect in magnetoplasmonic bilayers consisting of Co and Au on an attenuated total reflection prism. It is demonstrated that the excitation of the SPP in the plasmonic film can lead to an enhancement of the Kerr effect. Analysis performed for the s- and p-polarized incident radiation showed that the enhancement of the Kerr effect is of resonant character, and it is observed when the incident angle of the probing light is close to the angles of the SPP excitation. Thickness-dependent study revealed that the largest enhancement of the Kerr effect is observed for rather thin magnetic layers in the range of couple of nanometers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gómez-Rivas, J. A. Sánchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B 74, 245324 (2006).
    [CrossRef]
  2. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
    [CrossRef]
  3. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
    [CrossRef] [PubMed]
  4. G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
    [CrossRef]
  5. G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. U. González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112(2008).
    [CrossRef] [PubMed]
  6. Y. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010).
    [CrossRef]
  7. M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112–3114 (2004).
    [CrossRef]
  8. Y. Demidemko, D. Makarov, P. Krone, and V. Lozovski, “Effect of a magnetic field on the optical properties of nonmagnetic nanorods in a dielectric matrix,” J. Opt. A: Pure Appl. Opt. 11, 125001 (2009).
    [CrossRef]
  9. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
    [CrossRef] [PubMed]
  10. V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
    [CrossRef] [PubMed]
  11. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
    [CrossRef]
  12. G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010).
    [CrossRef]
  13. M. Essone Mezeme, S. Lasquellec, and S. Brosseau, “Electromagnetic properties of resonant magnetoplasmonic core-shell nanostructures,” J. Appl. Phys. 109, 014302 (2011).
    [CrossRef]
  14. T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60, 1426–1429 (1988).
    [CrossRef] [PubMed]
  15. D. Weller, “Magneto-optical Kerr spectroscopy of transition metal alloy and compound films,” in Spin-Orbit-Influenced Spectroscopy of Magnetic Solids, Vol.  466 of Lecture Notes in Physics (Springer, 1996), pp. 1–28.
    [CrossRef]
  16. A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
    [CrossRef]
  17. N. Bonod, R. Reinisch, E. Popov, and M. Nevière, “Optimization of surface-plasmon-enhanced magneto-optical effects,” J. Opt. Soc. Am. B 21, 791–797 (2004).
    [CrossRef]
  18. B. I. Khudik, V. Z. Lozovskii, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Status Solidi B 153, 167–177 (1989).
    [CrossRef]
  19. M. L. Bah, A. Akjouj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
    [CrossRef]
  20. O. Keller, “Local fields in electrodynamics of mesoscopic media,” Phys. Rep. 268, 85–262 (1996).
    [CrossRef]
  21. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  22. D. W. Pohl, “Near-field optics and the surface plasmon polariton,” in Near-Field Optics and Surface Plasmon Polariton, S.Kawata, ed., Vol.  81 of Topics in Appled Physics (Springer, 2001), pp. 1–13.
    [CrossRef]
  23. D. C. S. Beddows, B. C. Griffiths, O. Samek, and H. H. Telle, “Application of frustrated total internal reflection devices to analytical laser spectroscopy,” Appl. Opt. 42, 6006–6015 (2003).
    [CrossRef] [PubMed]
  24. B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009).
    [CrossRef]
  25. V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008).
    [CrossRef]
  26. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nanotoday 4, 244–251(2009).
    [CrossRef]
  27. N. Richard, A. Dereux, T. David, E. Bourillot, and J. P. Goudonnet, “Magneto-optical effects in multilayers illuminated by total internal reflection,” Phys. Rev. B 59, 5936–5944 (1999).
    [CrossRef]
  28. N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
    [CrossRef]
  29. D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
    [CrossRef]
  30. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
    [CrossRef]
  31. N. J. Harrik, Internal Reflection Spectroscopy (Wiley, 1967).
  32. E. J. Rothwell and M. J. Cloud, Electromagnetics (CRC Press, 2001).
    [CrossRef]
  33. C. Y. You and S. C. Shin, “Derivation of simplified analytic formulae for magneto-optical Kerr effects,” Appl. Phys. Lett. 69, 1315–1317 (1996).
    [CrossRef]
  34. P. Weinberger, “John Kerr and his effects found in 1877 and 1878,” Philos. Mag. Lett. 88, 897–907 (2008).
    [CrossRef]
  35. C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, “Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. Rev. B 34, 3192–3197(1986).
    [CrossRef]
  36. R. Allenspach, M. Stampanoni, and A. Bischof, “Magnetic domains in thin epitaxial Co/Au(111) films,” Phys. Rev. Lett. 65, 3344 (1990).
    [CrossRef] [PubMed]
  37. G. S. Krinchik, “Ferromagnetic Hall effect at optical frequencies and inner effective magnetic field of ferromagnetic metals,” J. Appl. Phys. 35, 1089–1092 (1964).
    [CrossRef]
  38. R. Carey and B. W. J. Thomas, “The theory of the Voigt effect in ferromagnetic materials,” J. Phys. D 7, 2362–2368(1974).
    [CrossRef]
  39. M. A. Ordal, L. L. Long, R. J. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  40. V. Chegel, Y. Demidenko, V. Lozovski, and A. Tsykhonya, “Influence of the shape of the particles covering the metal surface on the dispersion relations of surface plasmons,” Surf. Sci. 602, 1540–1546 (2008).
    [CrossRef]
  41. V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010).
    [CrossRef]

2011 (1)

M. Essone Mezeme, S. Lasquellec, and S. Brosseau, “Electromagnetic properties of resonant magnetoplasmonic core-shell nanostructures,” J. Appl. Phys. 109, 014302 (2011).
[CrossRef]

2010 (5)

G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010).
[CrossRef]

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[CrossRef]

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010).
[CrossRef]

Y. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010).
[CrossRef]

2009 (5)

B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009).
[CrossRef]

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nanotoday 4, 244–251(2009).
[CrossRef]

Y. Demidemko, D. Makarov, P. Krone, and V. Lozovski, “Effect of a magnetic field on the optical properties of nonmagnetic nanorods in a dielectric matrix,” J. Opt. A: Pure Appl. Opt. 11, 125001 (2009).
[CrossRef]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
[CrossRef] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

2008 (5)

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[CrossRef] [PubMed]

V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008).
[CrossRef]

P. Weinberger, “John Kerr and his effects found in 1877 and 1878,” Philos. Mag. Lett. 88, 897–907 (2008).
[CrossRef]

V. Chegel, Y. Demidenko, V. Lozovski, and A. Tsykhonya, “Influence of the shape of the particles covering the metal surface on the dispersion relations of surface plasmons,” Surf. Sci. 602, 1540–1546 (2008).
[CrossRef]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. U. González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112(2008).
[CrossRef] [PubMed]

2007 (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

2006 (1)

J. Gómez-Rivas, J. A. Sánchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B 74, 245324 (2006).
[CrossRef]

2005 (2)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

2004 (2)

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112–3114 (2004).
[CrossRef]

N. Bonod, R. Reinisch, E. Popov, and M. Nevière, “Optimization of surface-plasmon-enhanced magneto-optical effects,” J. Opt. Soc. Am. B 21, 791–797 (2004).
[CrossRef]

2003 (1)

2001 (1)

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

1999 (2)

N. Richard, A. Dereux, T. David, E. Bourillot, and J. P. Goudonnet, “Magneto-optical effects in multilayers illuminated by total internal reflection,” Phys. Rev. B 59, 5936–5944 (1999).
[CrossRef]

N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
[CrossRef]

1996 (2)

C. Y. You and S. C. Shin, “Derivation of simplified analytic formulae for magneto-optical Kerr effects,” Appl. Phys. Lett. 69, 1315–1317 (1996).
[CrossRef]

O. Keller, “Local fields in electrodynamics of mesoscopic media,” Phys. Rep. 268, 85–262 (1996).
[CrossRef]

1994 (1)

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef] [PubMed]

1992 (1)

M. L. Bah, A. Akjouj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

1990 (1)

R. Allenspach, M. Stampanoni, and A. Bischof, “Magnetic domains in thin epitaxial Co/Au(111) films,” Phys. Rev. Lett. 65, 3344 (1990).
[CrossRef] [PubMed]

1989 (1)

B. I. Khudik, V. Z. Lozovskii, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Status Solidi B 153, 167–177 (1989).
[CrossRef]

1988 (1)

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60, 1426–1429 (1988).
[CrossRef] [PubMed]

1986 (1)

C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, “Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. Rev. B 34, 3192–3197(1986).
[CrossRef]

1983 (1)

1974 (1)

R. Carey and B. W. J. Thomas, “The theory of the Voigt effect in ferromagnetic materials,” J. Phys. D 7, 2362–2368(1974).
[CrossRef]

1964 (1)

G. S. Krinchik, “Ferromagnetic Hall effect at optical frequencies and inner effective magnetic field of ferromagnetic metals,” J. Appl. Phys. 35, 1089–1092 (1964).
[CrossRef]

Acimovic, S.

Akjouj, A.

M. L. Bah, A. Akjouj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

Alexander, R. W.

Allenspach, R.

R. Allenspach, M. Stampanoni, and A. Bischof, “Magnetic domains in thin epitaxial Co/Au(111) films,” Phys. Rev. Lett. 65, 3344 (1990).
[CrossRef] [PubMed]

Angelomé, P. C.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nanotoday 4, 244–251(2009).
[CrossRef]

Armelles, G.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. U. González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112(2008).
[CrossRef] [PubMed]

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

Atwater, H. A.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Awano, H.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60, 1426–1429 (1988).
[CrossRef] [PubMed]

Badenes, G.

Bah, M. L.

M. L. Bah, A. Akjouj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

Beaurepaire, E.

N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
[CrossRef]

Beauvillain, P.

C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, “Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. Rev. B 34, 3192–3197(1986).
[CrossRef]

Beddows, D. C. S.

Bell, R. J.

Bell, R. R.

Bertrand, P.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[CrossRef] [PubMed]

Bischof, A.

R. Allenspach, M. Stampanoni, and A. Bischof, “Magnetic domains in thin epitaxial Co/Au(111) films,” Phys. Rev. Lett. 65, 3344 (1990).
[CrossRef] [PubMed]

Bolivar, P. H.

J. Gómez-Rivas, J. A. Sánchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B 74, 245324 (2006).
[CrossRef]

Bonod, N.

Bourillot, E.

N. Richard, A. Dereux, T. David, E. Bourillot, and J. P. Goudonnet, “Magneto-optical effects in multilayers illuminated by total internal reflection,” Phys. Rev. B 59, 5936–5944 (1999).
[CrossRef]

N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
[CrossRef]

Brosseau, S.

M. Essone Mezeme, S. Lasquellec, and S. Brosseau, “Electromagnetic properties of resonant magnetoplasmonic core-shell nanostructures,” J. Appl. Phys. 109, 014302 (2011).
[CrossRef]

Calle, A.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[CrossRef]

Carey, R.

R. Carey and B. W. J. Thomas, “The theory of the Voigt effect in ferromagnetic materials,” J. Phys. D 7, 2362–2368(1974).
[CrossRef]

Carrascosa, L. G.

B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009).
[CrossRef]

Cebollada, A.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. U. González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112(2008).
[CrossRef] [PubMed]

Cesario, J.

Chappert, C.

C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, “Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. Rev. B 34, 3192–3197(1986).
[CrossRef]

Chegel, V.

V. Chegel, Y. Demidenko, V. Lozovski, and A. Tsykhonya, “Influence of the shape of the particles covering the metal surface on the dispersion relations of surface plasmons,” Surf. Sci. 602, 1540–1546 (2008).
[CrossRef]

V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008).
[CrossRef]

Chegel, Y.

V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008).
[CrossRef]

Cloud, M. J.

E. J. Rothwell and M. J. Cloud, Electromagnetics (CRC Press, 2001).
[CrossRef]

David, T.

N. Richard, A. Dereux, T. David, E. Bourillot, and J. P. Goudonnet, “Magneto-optical effects in multilayers illuminated by total internal reflection,” Phys. Rev. B 59, 5936–5944 (1999).
[CrossRef]

N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
[CrossRef]

Demidemko, Y.

Y. Demidemko, D. Makarov, P. Krone, and V. Lozovski, “Effect of a magnetic field on the optical properties of nonmagnetic nanorods in a dielectric matrix,” J. Opt. A: Pure Appl. Opt. 11, 125001 (2009).
[CrossRef]

Demidenko, Y.

Y. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010).
[CrossRef]

V. Chegel, Y. Demidenko, V. Lozovski, and A. Tsykhonya, “Influence of the shape of the particles covering the metal surface on the dispersion relations of surface plasmons,” Surf. Sci. 602, 1540–1546 (2008).
[CrossRef]

Dereux, A.

N. Richard, A. Dereux, T. David, E. Bourillot, and J. P. Goudonnet, “Magneto-optical effects in multilayers illuminated by total internal reflection,” Phys. Rev. B 59, 5936–5944 (1999).
[CrossRef]

N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
[CrossRef]

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[CrossRef] [PubMed]

Diwekar, M.

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112–3114 (2004).
[CrossRef]

Dobrzynski, L.

M. L. Bah, A. Akjouj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

Ezhov, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

Farina, D.

B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009).
[CrossRef]

Fariña, D.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[CrossRef]

Fedyanin, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

Ferreiro-Vila, E.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

Fukuda, H.

G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010).
[CrossRef]

Ganshina, E. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. U. González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112(2008).
[CrossRef] [PubMed]

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

García-Martín, J. M.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. U. González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112(2008).
[CrossRef] [PubMed]

Gómez-Rivas, J.

J. Gómez-Rivas, J. A. Sánchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B 74, 245324 (2006).
[CrossRef]

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. U. González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112(2008).
[CrossRef] [PubMed]

González-Díaz, J. B.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. U. González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112(2008).
[CrossRef] [PubMed]

Goudonnet, J. P.

N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
[CrossRef]

N. Richard, A. Dereux, T. David, E. Bourillot, and J. P. Goudonnet, “Magneto-optical effects in multilayers illuminated by total internal reflection,” Phys. Rev. B 59, 5936–5944 (1999).
[CrossRef]

Griffiths, B. C.

Grunin, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

Guiver, M.

V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008).
[CrossRef]

Halas, N. J.

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
[CrossRef] [PubMed]

Harrik, N. J.

N. J. Harrik, Internal Reflection Spectroscopy (Wiley, 1967).

Hermann, C.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef] [PubMed]

Hurdequint, H.

C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, “Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. Rev. B 34, 3192–3197(1986).
[CrossRef]

Kamaev, V.

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112–3114 (2004).
[CrossRef]

Katayama, T.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60, 1426–1429 (1988).
[CrossRef] [PubMed]

Keller, O.

O. Keller, “Local fields in electrodynamics of mesoscopic media,” Phys. Rep. 268, 85–262 (1996).
[CrossRef]

Khudik, B. I.

B. I. Khudik, V. Z. Lozovskii, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Status Solidi B 153, 167–177 (1989).
[CrossRef]

Koshizuka, N.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60, 1426–1429 (1988).
[CrossRef] [PubMed]

Kosobukin, V. A.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef] [PubMed]

Krinchik, G. S.

G. S. Krinchik, “Ferromagnetic Hall effect at optical frequencies and inner effective magnetic field of ferromagnetic metals,” J. Appl. Phys. 35, 1089–1092 (1964).
[CrossRef]

Krone, P.

Y. Demidemko, D. Makarov, P. Krone, and V. Lozovski, “Effect of a magnetic field on the optical properties of nonmagnetic nanorods in a dielectric matrix,” J. Opt. A: Pure Appl. Opt. 11, 125001 (2009).
[CrossRef]

Kurz, H.

J. Gómez-Rivas, J. A. Sánchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B 74, 245324 (2006).
[CrossRef]

Kuttge, M.

J. Gómez-Rivas, J. A. Sánchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B 74, 245324 (2006).
[CrossRef]

Lampel, G.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef] [PubMed]

Lasquellec, S.

M. Essone Mezeme, S. Lasquellec, and S. Brosseau, “Electromagnetic properties of resonant magnetoplasmonic core-shell nanostructures,” J. Appl. Phys. 109, 014302 (2011).
[CrossRef]

Le Dang, K.

C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, “Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. Rev. B 34, 3192–3197(1986).
[CrossRef]

Lechuga, L. M.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[CrossRef]

B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009).
[CrossRef]

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nanotoday 4, 244–251(2009).
[CrossRef]

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

Liz-Marzán, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nanotoday 4, 244–251(2009).
[CrossRef]

Long, L. L.

Lopatynska, O.

V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008).
[CrossRef]

Lopatynskyi, A.

V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008).
[CrossRef]

Lozovski, V.

Y. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010).
[CrossRef]

V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010).
[CrossRef]

Y. Demidemko, D. Makarov, P. Krone, and V. Lozovski, “Effect of a magnetic field on the optical properties of nonmagnetic nanorods in a dielectric matrix,” J. Opt. A: Pure Appl. Opt. 11, 125001 (2009).
[CrossRef]

V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008).
[CrossRef]

V. Chegel, Y. Demidenko, V. Lozovski, and A. Tsykhonya, “Influence of the shape of the particles covering the metal surface on the dispersion relations of surface plasmons,” Surf. Sci. 602, 1540–1546 (2008).
[CrossRef]

Lozovskii, V. Z.

B. I. Khudik, V. Z. Lozovskii, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Status Solidi B 153, 167–177 (1989).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Makarov, D.

Y. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010).
[CrossRef]

Y. Demidemko, D. Makarov, P. Krone, and V. Lozovski, “Effect of a magnetic field on the optical properties of nonmagnetic nanorods in a dielectric matrix,” J. Opt. A: Pure Appl. Opt. 11, 125001 (2009).
[CrossRef]

Marliere, C.

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef] [PubMed]

Mezeme, M. Essone

M. Essone Mezeme, S. Lasquellec, and S. Brosseau, “Electromagnetic properties of resonant magnetoplasmonic core-shell nanostructures,” J. Appl. Phys. 109, 014302 (2011).
[CrossRef]

Mirin, N. A.

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
[CrossRef] [PubMed]

Mori, T.

G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010).
[CrossRef]

Nazarenko-Baryakhtar, I. V.

B. I. Khudik, V. Z. Lozovskii, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Status Solidi B 153, 167–177 (1989).
[CrossRef]

Nevière, M.

Nishihara, Y.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60, 1426–1429 (1988).
[CrossRef] [PubMed]

Ordal, M. A.

Otte, M. A.

B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009).
[CrossRef]

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

Pereira, S.

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

Peretti, J.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef] [PubMed]

Pohl, D. W.

D. W. Pohl, “Near-field optics and the surface plasmon polariton,” in Near-Field Optics and Surface Plasmon Polariton, S.Kawata, ed., Vol.  81 of Topics in Appled Physics (Springer, 2001), pp. 1–13.
[CrossRef]

Popov, E.

Quidant, R.

Regatos, D.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[CrossRef]

B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009).
[CrossRef]

Reinisch, R.

Renard, D.

C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, “Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. Rev. B 34, 3192–3197(1986).
[CrossRef]

Richard, N.

N. Richard, A. Dereux, T. David, E. Bourillot, and J. P. Goudonnet, “Magneto-optical effects in multilayers illuminated by total internal reflection,” Phys. Rev. B 59, 5936–5944 (1999).
[CrossRef]

N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
[CrossRef]

Rothwell, E. J.

E. J. Rothwell and M. J. Cloud, Electromagnetics (CRC Press, 2001).
[CrossRef]

Safarov, V. I.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef] [PubMed]

Saito, S.

G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010).
[CrossRef]

Samek, O.

Sánchez-Gil, J. A.

J. Gómez-Rivas, J. A. Sánchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B 74, 245324 (2006).
[CrossRef]

Scheurer, F.

N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
[CrossRef]

Sepúlveda, B.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[CrossRef]

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nanotoday 4, 244–251(2009).
[CrossRef]

B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009).
[CrossRef]

Shi, J.

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112–3114 (2004).
[CrossRef]

Shin, S. C.

C. Y. You and S. C. Shin, “Derivation of simplified analytic formulae for magneto-optical Kerr effects,” Appl. Phys. Lett. 69, 1315–1317 (1996).
[CrossRef]

Stampanoni, M.

R. Allenspach, M. Stampanoni, and A. Bischof, “Magnetic domains in thin epitaxial Co/Au(111) films,” Phys. Rev. Lett. 65, 3344 (1990).
[CrossRef] [PubMed]

Suzuki, M.

G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010).
[CrossRef]

Suzuki, Y.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60, 1426–1429 (1988).
[CrossRef] [PubMed]

Sweatlock, L. A.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[CrossRef] [PubMed]

Takahashi, M.

G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010).
[CrossRef]

Telle, H. H.

Thomas, B. W. J.

R. Carey and B. W. J. Thomas, “The theory of the Voigt effect in ferromagnetic materials,” J. Phys. D 7, 2362–2368(1974).
[CrossRef]

Torrado, J. F.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

Tsykhonya, A.

V. Chegel, Y. Demidenko, V. Lozovski, and A. Tsykhonya, “Influence of the shape of the particles covering the metal surface on the dispersion relations of surface plasmons,” Surf. Sci. 602, 1540–1546 (2008).
[CrossRef]

Vardeny, Z. V.

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112–3114 (2004).
[CrossRef]

Ward, C. A.

Weinberger, P.

P. Weinberger, “John Kerr and his effects found in 1877 and 1878,” Philos. Mag. Lett. 88, 897–907 (2008).
[CrossRef]

Weller, D.

D. Weller, “Magneto-optical Kerr spectroscopy of transition metal alloy and compound films,” in Spin-Orbit-Influenced Spectroscopy of Magnetic Solids, Vol.  466 of Lecture Notes in Physics (Springer, 1996), pp. 1–28.
[CrossRef]

Xiang Du, G.

G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010).
[CrossRef]

You, C. Y.

C. Y. You and S. C. Shin, “Derivation of simplified analytic formulae for magneto-optical Kerr effects,” Appl. Phys. Lett. 69, 1315–1317 (1996).
[CrossRef]

Zhdanov, A. G.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112–3114 (2004).
[CrossRef]

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

C. Y. You and S. C. Shin, “Derivation of simplified analytic formulae for magneto-optical Kerr effects,” Appl. Phys. Lett. 69, 1315–1317 (1996).
[CrossRef]

J. Appl. Phys. (5)

G. S. Krinchik, “Ferromagnetic Hall effect at optical frequencies and inner effective magnetic field of ferromagnetic metals,” J. Appl. Phys. 35, 1089–1092 (1964).
[CrossRef]

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010).
[CrossRef]

M. Essone Mezeme, S. Lasquellec, and S. Brosseau, “Electromagnetic properties of resonant magnetoplasmonic core-shell nanostructures,” J. Appl. Phys. 109, 014302 (2011).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

Y. Demidemko, D. Makarov, P. Krone, and V. Lozovski, “Effect of a magnetic field on the optical properties of nonmagnetic nanorods in a dielectric matrix,” J. Opt. A: Pure Appl. Opt. 11, 125001 (2009).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

R. Carey and B. W. J. Thomas, “The theory of the Voigt effect in ferromagnetic materials,” J. Phys. D 7, 2362–2368(1974).
[CrossRef]

Nano Lett. (2)

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[CrossRef] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
[CrossRef] [PubMed]

Nanotoday (1)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nanotoday 4, 244–251(2009).
[CrossRef]

Nat. Photonics (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

Opt. Express (1)

Philos. Mag. Lett. (1)

P. Weinberger, “John Kerr and his effects found in 1877 and 1878,” Philos. Mag. Lett. 88, 897–907 (2008).
[CrossRef]

Phys. Rep. (1)

O. Keller, “Local fields in electrodynamics of mesoscopic media,” Phys. Rep. 268, 85–262 (1996).
[CrossRef]

Phys. Rev. B (5)

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

J. Gómez-Rivas, J. A. Sánchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B 74, 245324 (2006).
[CrossRef]

C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, “Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. Rev. B 34, 3192–3197(1986).
[CrossRef]

N. Richard, A. Dereux, T. David, E. Bourillot, and J. P. Goudonnet, “Magneto-optical effects in multilayers illuminated by total internal reflection,” Phys. Rev. B 59, 5936–5944 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

R. Allenspach, M. Stampanoni, and A. Bischof, “Magnetic domains in thin epitaxial Co/Au(111) films,” Phys. Rev. Lett. 65, 3344 (1990).
[CrossRef] [PubMed]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef] [PubMed]

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60, 1426–1429 (1988).
[CrossRef] [PubMed]

Phys. Status Solidi B (2)

B. I. Khudik, V. Z. Lozovskii, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Status Solidi B 153, 167–177 (1989).
[CrossRef]

N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999).
[CrossRef]

Proc. SPIE (1)

B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009).
[CrossRef]

Sens. Actuators B (1)

V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008).
[CrossRef]

Surf. Sci. (1)

V. Chegel, Y. Demidenko, V. Lozovski, and A. Tsykhonya, “Influence of the shape of the particles covering the metal surface on the dispersion relations of surface plasmons,” Surf. Sci. 602, 1540–1546 (2008).
[CrossRef]

Surf. Sci. Rep. (1)

M. L. Bah, A. Akjouj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

Other (4)

D. Weller, “Magneto-optical Kerr spectroscopy of transition metal alloy and compound films,” in Spin-Orbit-Influenced Spectroscopy of Magnetic Solids, Vol.  466 of Lecture Notes in Physics (Springer, 1996), pp. 1–28.
[CrossRef]

D. W. Pohl, “Near-field optics and the surface plasmon polariton,” in Near-Field Optics and Surface Plasmon Polariton, S.Kawata, ed., Vol.  81 of Topics in Appled Physics (Springer, 2001), pp. 1–13.
[CrossRef]

N. J. Harrik, Internal Reflection Spectroscopy (Wiley, 1967).

E. J. Rothwell and M. J. Cloud, Electromagnetics (CRC Press, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch revealing the excitation geometry of plasmons in a magnetoplasmonic composite using an ATR prism. Total thickness of the composite is h ( h = h m + h p ), which consists of a plasmonic (thickness h p ) and a ferromagnetic (thickness h m ) layer. The external magnetic field, B , is applied along the O Z axis. The incident electromagnetic wave, E ( 0 ) , is shown together with the reflected, E ( R ) , and the transmitted, E ( T ) , ones.

Fig. 2
Fig. 2

Sketch demonstrating the method of the pseudovacuum Green’s function. (a) Initial system without ferromagnetic film (pseudovacuum). (b) Thin ferromagnetic film with a thickness h m is exerted in a pseudovacuum. The Green’s functions describing the propagation of light in the system are indicated.

Fig. 3
Fig. 3

Magneto-optical Kerr effect in a Co–Au magnetoplasmonic composite in the case of s-polarized incident light. Change of the Kerr rotation with the incident angle: (a) different thickness h m of the magnetic Co film, (b) different thickness h p of the plasmonic Au film.

Fig. 4
Fig. 4

Magneto-optical Kerr effect in a Co–Au magnetoplasmonic composite in the case of p-polarized incident light. Change of the Kerr rotation with the incident angle: (a) different thickness h m of the magnetic Co film, (b) different thickness h p of the plasmonic Au film. Note the difference in the scaling of the y axis compared to the case of s-polarized excitation (Fig. 3).

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

ε ( P ) ( ω ) = ε ( P ) ( ω ) U , ε ( P ) ( ω ) = 1 ω p p 2 ω ( ω + i γ p ) ,
ε ( M ) ( ω , B ) = ε d ( ω ) ( 1 i Q ( ω , B ) 0 i Q ( ω , B ) 1 0 0 0 1 ) ,
ε d ( ω ) = 1 ω p m 2 ω ( ω + i γ m ) , and Q ( ω , B ) = ω c / ω .
G ( m ) > < , < < ( k , ω , z , z ) = G ( 0 ) > < . < < ( k , ω , z , z ) k 0 2 h m G ( 0 ) > > , < > ( k , ω , z , l m ) X ( m ) ( k , ω , l m ) G ( 0 ) > < ( k , ω , l m , z ) ,
G ( m ) > > , < > ( k , ω , z , z ) = G ( 0 ) > > . < > ( k , ω , z , z ) k 0 2 h m G ( 0 ) > > , < > ( k , ω , z , l m ) X ( m ) ( k , ω , l m ) G ( 0 ) > > ( k , ω , l m , z ) .
X ( m ) ( k , ω , l m ) = χ ( m ) ( ω ) Ω ( m ) ( k , ω , l m )
Ω ( m ) ( k , ω , l m ) = [ U + k 0 2 h m G ( 0 ) > > ( k , ω , l m , l m ) χ ( m ) ( ω ) ] 1 .
Θ K P = r s p r p p , Θ K S = r p s r s s ,
r p s = | η x y | 2 + | η z y | 2 , r s s = | η y y | 2 ,
r s p = | η y x | 2 + | η y z | 2 , r p p = | η x x | 2 + | η z z | 2 .
E ( m ) < ( k , ω , z ) = i μ 0 ω L d z [ G ( 0 ) < < ( k , ω , z , z ) k 0 2 h m G ( 0 ) < > ( k , ω , z , l m ) X ( m ) ( k , ω , l m ) G ( 0 ) > < ( k , ω , l m , z ) ] j ext < ( k , ω , z ) ,
E ( m ) ( R ) < ( k , ω , z ) = i μ 0 ω L d z [ I ( 0 ) < < ( k , ω , z , z ) k 0 2 h m G ( 0 ) < > ( k , ω , z , l m ) X ( m ) ( k , ω , l m ) G ( 0 ) > < ( k , ω , l m , z ) ] j ext < ( k , ω , z ) .
E ( m ) ( R ) < ( k , ω , z ) = i μ 0 c L d z [ I ( 0 ) < < ( k , ω , z , z ) ξ m ( ω ) R ( 0 ) < > ( k , ω , z , l m ) X ( m ) ( k , ω , l m ) R ( 0 ) > < ( k , ω , l m , z ) ] j ext < ( k , ω , z ) ,
ξ m ( ω ) = k 0 2 h m .
R ( 0 ) y y < > , > < ( k , ω , z , l m ) = 1 Δ ( S ) ( k | | , ω ) F y y < > , > < ( k | | , ω ) f < > , > < ( k , ω , z , l m ) ,
R ( 0 ) i j < > , > < ( k , ω , z , l m ) = 1 Δ ( P ) ( k | | , ω ) F i j < > , > < ( k | | , ω ) f < > , > < ( k , ω , z , l m ) , ( i , j y ) ,
Θ K S ( θ , ω ) = ( ξ m ( ω ) Q ( ω ) ) 2 | Δ ( S ) ( θ , ω ) | 2 | Δ ( P ) ( θ , ω ) | 2 Φ P S ( θ , ω ) Φ S S ( θ , ω ) e 2 ξ m ( ω ) Re b 3 ( θ ) ,
Φ S S ( θ , ω ) = | I ( 0 ) y y < < ( θ , ω ) D ( m ) ( θ , ω ) Δ ( S ) ( θ , ω ) ξ m ( ω ) F ( 0 ) y y < > ( θ , ω ) Ψ ( m ) y y ( θ , ω ) F ( 0 ) y y > < ( θ , ω ) e ξ m ( ω ) b 3 ( θ ) | 2 ,
Φ P S ( θ , ω ) = | ( F ( 0 ) x x < > ( θ , ω ) Ψ ( m ) x y ( θ , ω ) + F ( 0 ) x z < > ( θ , ω ) Ψ ( m ) z y ( θ , ω ) ) F ( 0 ) y y > < ( θ , ω ) | 2 + | ( F ( 0 ) z x < > ( θ , ω ) Ψ ( m ) x y ( θ , ω ) + F ( 0 ) z z < > ( θ , ω ) Ψ ( m ) z y ( θ , ω ) ) F ( 0 ) y y > < ( θ , ω ) | 2 .
Θ K P ( θ , ω ) = ( Q ( ω ) ξ m ( ω ) ) 2 | Δ ( P ) ( θ , ω ) | 2 | Δ ( S ) ( θ , ω ) | 2 Φ S P ( θ , ω ) Φ P P ( θ , ω ) e 2 ξ m ( ω ) Re b 3 ( θ ) ,
Φ S P ( θ , ω ) = | F ( 0 ) y y < > ( θ , ω ) { Ψ ( m ) y i ( θ , ω ) F ( 0 ) i x > < ( θ , ω ) cos θ + Ψ ( m ) y i ( θ , ω ) F ( 0 ) i z > < ( θ , ω ) sin θ } | 2 ,
Φ P P ( θ , ω ) = | ( I ( 0 ) x x < < ( θ , ω ) cos θ + I ( 0 ) x z < < ( θ , ω ) sin θ ) D ( m ) ( θ , ω ) ( Δ ( p ) ( θ , ω ) ) 2 ξ m ( ω ) F ( 0 ) x i < > ( θ , ω ) Ψ ( m ) i n ( θ , ω ) [ F ( 0 ) n x > < ( θ , ω ) cos θ + F ( 0 ) n z > < ( θ , ω ) sin θ ] e ξ m ( ω ) b 3 ( θ ) | 2 + | ( I ( 0 ) z x < < ( θ , ω ) cos θ + I ( 0 ) z z < < ( θ , ω ) sin θ ) D ( m ) ( θ , ω ) ( Δ ( p ) ( θ , ω ) ) 2 ξ m ( ω ) F ( 0 ) z i < > ( θ , ω ) Ψ ( m ) i n ( θ , ω ) [ F ( 0 ) n x > < ( θ , ω ) cos θ + F ( 0 ) n z > < ( θ , ω ) sin θ ] e ξ b ( ω ) b 3 ( θ ) | 2 .
E ( m ) > ( k , ω , z ) = i μ 0 ω L d z G ( m ) > < ( k , ω , z , z ) J ext < ( k , ω , z ) ,
E ( m ) > ( k , ω , z ) = E ( 0 ) > ( k , ω , z ) i μ 0 ω ( h m ) d z G ( 0 ) > > ( k , ω , z , z ) J ( m ) > ( k , ω , z ) ,
E ( m ) > ( k , ω , z ) E ( 0 ) > ( k , ω , z ) i μ 0 ω h m G ( 0 ) > > ( k , ω , z , l m ) J ( m ) > ( k , ω , l m ) ,
J ( m ) > ( k , ω , l m ) = i ω ε 0 χ ( m ) ( ω ) E ( m ) > ( k , ω , l m ) .
E ( m ) > ( k , ω , z ) E ( 0 ) > ( k , ω , z ) k 0 2 h m G ( 0 ) > > ( k , ω , z , l m ) χ ( m ) ( ω ) E ( m ) > ( k , ω , l m ) ,
G ( m ) > < ( k , ω , z , z ) = G ( 0 ) > < ( k , ω , z , z ) k 0 2 h m G ( 0 ) > > ( k , ω , z , l m ) χ ( m ) ( ω ) G ( m ) > < ( k , ω , l m , z ) .
G ( m ) > < ( k , ω , l m , z ) = Ω ( m ) ( k , ω , l m ) G ( 0 ) > < ( k , ω , l m , z ) ,
Ω ( m ) ( k , ω , l m ) = [ U + k 0 2 h m G ( 0 ) > > ( k , ω , l m , l m ) χ ( m ) ( ω ) ] 1 .
G ( m ) > < ( k , ω , z , z ) = G ( 0 ) > < ( k , ω , z , z ) k 0 2 h m G ( 0 ) > > ( k , ω , z , l m ) X ( m ) ( k , ω , l m , l m ) G ( 0 ) > < ( k , ω , l m , z ) ,
X ( m ) ( k , ω , l m ) = χ ( m ) ( ω ) Ω ( m ) ( k , ω , l m ) .
E ( m ) < ( k , ω , z ) = i μ 0 ω L d z G ( m ) < < ( k , ω , z , z ) J ext < ( k , ω , z ) .
E ( m ) < ( k , ω , z ) E ( 0 ) < ( k , ω , z ) i μ 0 ω h m G ( 0 ) < > ( k , ω , z , l m ) J ( m ) > ( k , ω , l m ) .
G ( m ) < < ( k , ω , z , z ) G ( 0 ) < < ( k , ω , z , z ) k 0 2 h m G ( 0 ) < > ( k , ω , z , l m ) χ ( m ) ( ω ) G ( m ) > < ( k , ω , l m , z ) .
G ( m ) < < ( k , ω , z , z ) G ( 0 ) < < ( k , ω , z , z ) k 0 2 h m G ( 0 ) < > ( k , ω , z , l m ) X ( m ) ( k , ω , l m ) G ( 0 ) > < ( k , ω , l m , z ) .
G ( m ) > > , < > ( k , ω , z , z ) = G ( 0 ) > > , < > ( k , ω , z , z ) k 0 2 h m G ( 0 ) > > , < > ( k , ω , z , l m ) X ( m ) ( k , ω , l m ) G ( 0 ) > > ( k , ω , l m , z ) .
G ( 0 ) a a ( k , ω , z , z ) = D ( 0 ) a a ( k , ω , z , z ) + I ( 0 ) a a ( k , ω , z , z ) ,

Metrics