Abstract

We propose a new method for the generation of both triangular-shaped optical pulses and flat-top, coherent supercontinuum spectra using the effect of fourth-order dispersion on parabolic pulses in a passive, normally dispersive highly nonlinear fiber. The pulse reshaping process is described qualitatively and is compared to numerical simulations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482-1488 (2009).
    [CrossRef]
  2. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185-1190 (1993).
    [CrossRef]
  3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).
    [CrossRef] [PubMed]
  4. S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133, 1647-1656 (2002).
    [CrossRef]
  5. V. I. Kruglov and J. D. Harvey, “Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541-2550(2006).
    [CrossRef]
  6. C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13, 3236-3241 (2005).
    [CrossRef] [PubMed]
  7. C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
    [CrossRef]
  8. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617-7622 (2006).
    [CrossRef] [PubMed]
  9. F. Ö. Ilday, J. Buckley, F. W. Wise, and W. G. Clark, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  10. B. G. Bale and S. Wabnitz, “Strong spectral filtering for a similariton mode-locked fiber laser,” Opt. Lett. 35, 2466-2468 (2010).
    [CrossRef] [PubMed]
  11. C. Aguergaray, D. Mechin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680-8687 (2010).
    [CrossRef] [PubMed]
  12. C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gb/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776-1778 (2005).
    [CrossRef] [PubMed]
  13. S. Boscolo and S. K. Turitsyn, “All-optical signal regeneration by temporal slicing of nonlinearly flattened optical waveform,” IEEE Photon. Technol. Lett. 17, 1235-1237 (2005).
    [CrossRef]
  14. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Time domain all-optical signal processing at a RZ optical receiver,” Opt. Express 13, 6217-6227 (2005).
    [CrossRef] [PubMed]
  15. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 829-831 (2006).
    [CrossRef]
  16. T. Hirooka and M. Nakazawa, “All-optical 40 GHz time-domain Fourier transformation using XPM with a dark parabolic pulse,” IEEE Photon. Technol. Lett. 20, 1869-1871 (2008).
    [CrossRef]
  17. Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15, 9584-9599 (2007).
    [CrossRef] [PubMed]
  18. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse re-shaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746-752 (2001).
    [CrossRef]
  19. F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, “An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper,” IEEE Photon. Technol. Lett. 20, 1461-1463 (2008).
    [CrossRef]
  20. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498-500 (2004).
    [CrossRef] [PubMed]
  21. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824-15835 (2007).
    [CrossRef] [PubMed]
  22. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse re-shaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
    [CrossRef] [PubMed]
  23. S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “Passive nonlinear pulse shaping in normally dispersive fiber systems,” IEEE J. Quantum Electron. 44, 1196-1203 (2008).
    [CrossRef]
  24. H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, “Generation of triangular-shaped optical pulses in normally dispersive fibre,” J. Opt. 12, 035205 (2010).
    [CrossRef]
  25. J. Li, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “OTDM add-drop multiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber,” J. Lightwave Technol. 23, 2654-2661 (2005).
    [CrossRef]
  26. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26, 1492-1496 (2009).
    [CrossRef]
  27. R. S. Bhamber, S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” in Proceedings of the 34th European Conference on Optical Communication (IEEE, 2008), paper Th.1.B.2.
    [CrossRef]
  28. R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006).
    [CrossRef]
  29. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
    [CrossRef]
  30. X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697-2703 (2003).
    [CrossRef] [PubMed]
  31. K. L. Corwin, N. L. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  32. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806-1808 (1997).
    [CrossRef]
  33. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24, 1771-1785 (2007).
    [CrossRef]
  34. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989-991 (2006).
    [CrossRef]
  35. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775-3787(2011).
    [CrossRef] [PubMed]
  36. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902-4907 (2011).
    [CrossRef] [PubMed]
  37. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles,” Opt. Express 14, 4445-4451 (2006).
    [CrossRef] [PubMed]
  38. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742-7749(2011).
    [CrossRef] [PubMed]
  39. B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of parabolic optical pulses,” J. Opt. 12, 015202(2010).
    [CrossRef]
  40. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  41. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and J. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225-2227 (2003).
    [CrossRef] [PubMed]
  42. K. Hammani, C. Finot, B. Kibler, and G. Millot, “Soliton generation in a microstructured fiber by fourth-order scalar modulation instability,” IEEE Photon. J. 1, 205-212 (2009).
    [CrossRef]
  43. E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude shaped pulses with negative chirp,” Opt. Lett. 36, 707-709 (2011).
    [CrossRef] [PubMed]
  44. G. B. Whitham, Linear and Nonlinear Waves, 1st ed. (Wiley Interscience, 1974).
  45. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett. 31, 2734-2736(2006).
    [CrossRef] [PubMed]
  46. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938-1948(2008).
    [CrossRef]

2011 (4)

2010 (4)

B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of parabolic optical pulses,” J. Opt. 12, 015202(2010).
[CrossRef]

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, “Generation of triangular-shaped optical pulses in normally dispersive fibre,” J. Opt. 12, 035205 (2010).
[CrossRef]

B. G. Bale and S. Wabnitz, “Strong spectral filtering for a similariton mode-locked fiber laser,” Opt. Lett. 35, 2466-2468 (2010).
[CrossRef] [PubMed]

C. Aguergaray, D. Mechin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680-8687 (2010).
[CrossRef] [PubMed]

2009 (3)

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482-1488 (2009).
[CrossRef]

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26, 1492-1496 (2009).
[CrossRef]

K. Hammani, C. Finot, B. Kibler, and G. Millot, “Soliton generation in a microstructured fiber by fourth-order scalar modulation instability,” IEEE Photon. J. 1, 205-212 (2009).
[CrossRef]

2008 (4)

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938-1948(2008).
[CrossRef]

S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “Passive nonlinear pulse shaping in normally dispersive fiber systems,” IEEE J. Quantum Electron. 44, 1196-1203 (2008).
[CrossRef]

T. Hirooka and M. Nakazawa, “All-optical 40 GHz time-domain Fourier transformation using XPM with a dark parabolic pulse,” IEEE Photon. Technol. Lett. 20, 1869-1871 (2008).
[CrossRef]

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, “An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper,” IEEE Photon. Technol. Lett. 20, 1461-1463 (2008).
[CrossRef]

2007 (4)

2006 (7)

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989-991 (2006).
[CrossRef]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles,” Opt. Express 14, 4445-4451 (2006).
[CrossRef] [PubMed]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

V. I. Kruglov and J. D. Harvey, “Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541-2550(2006).
[CrossRef]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617-7622 (2006).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett. 31, 2734-2736(2006).
[CrossRef] [PubMed]

2005 (5)

2004 (3)

T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498-500 (2004).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

F. Ö. Ilday, J. Buckley, F. W. Wise, and W. G. Clark, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (1)

S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133, 1647-1656 (2002).
[CrossRef]

2001 (1)

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

1997 (1)

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

1993 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Aguergaray, C.

Ahn, T.-J.

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006).
[CrossRef]

Anderson, D.

Andrekson, P. A.

Andresen, E. R.

Asghari, M. H.

Azaña, J.

Bale, B. G.

B. G. Bale and S. Wabnitz, “Strong spectral filtering for a similariton mode-locked fiber laser,” Opt. Lett. 35, 2466-2468 (2010).
[CrossRef] [PubMed]

B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of parabolic optical pulses,” J. Opt. 12, 015202(2010).
[CrossRef]

Bartelt, H.

Barviau, B.

Bhamber, R. S.

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26, 1492-1496 (2009).
[CrossRef]

R. S. Bhamber, S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” in Proceedings of the 34th European Conference on Optical Communication (IEEE, 2008), paper Th.1.B.2.
[CrossRef]

Billet, C.

C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13, 3236-3241 (2005).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

Bjarklev, A.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989-991 (2006).
[CrossRef]

Blow, K. J.

Boscolo, S.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, “Generation of triangular-shaped optical pulses in normally dispersive fibre,” J. Opt. 12, 035205 (2010).
[CrossRef]

B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of parabolic optical pulses,” J. Opt. 12, 015202(2010).
[CrossRef]

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26, 1492-1496 (2009).
[CrossRef]

S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “Passive nonlinear pulse shaping in normally dispersive fiber systems,” IEEE J. Quantum Electron. 44, 1196-1203 (2008).
[CrossRef]

S. Boscolo and S. K. Turitsyn, “All-optical signal regeneration by temporal slicing of nonlinearly flattened optical waveform,” IEEE Photon. Technol. Lett. 17, 1235-1237 (2005).
[CrossRef]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Time domain all-optical signal processing at a RZ optical receiver,” Opt. Express 13, 6217-6227 (2005).
[CrossRef] [PubMed]

S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133, 1647-1656 (2002).
[CrossRef]

R. S. Bhamber, S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” in Proceedings of the 34th European Conference on Optical Communication (IEEE, 2008), paper Th.1.B.2.
[CrossRef]

Bosman, G. W.

Broderick, N. G. R.

Buckley, J.

F. Ö. Ilday, J. Buckley, F. W. Wise, and W. G. Clark, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Burgoyne, B.

Chow, K.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989-991 (2006).
[CrossRef]

Clark, W. G.

F. Ö. Ilday, J. Buckley, F. W. Wise, and W. G. Clark, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Coen, S.

Corwin, K. L.

K. L. Corwin, N. L. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Desaix, M.

Diddams, S. A.

K. L. Corwin, N. L. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Dudley, J. M.

E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude shaped pulses with negative chirp,” Opt. Lett. 36, 707-709 (2011).
[CrossRef] [PubMed]

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482-1488 (2009).
[CrossRef]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24, 1771-1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13, 3236-3241 (2005).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

K. L. Corwin, N. L. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Ellis, A. D.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Finot, C.

E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude shaped pulses with negative chirp,” Opt. Lett. 36, 707-709 (2011).
[CrossRef] [PubMed]

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482-1488 (2009).
[CrossRef]

K. Hammani, C. Finot, B. Kibler, and G. Millot, “Soliton generation in a microstructured fiber by fourth-order scalar modulation instability,” IEEE Photon. J. 1, 205-212 (2009).
[CrossRef]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938-1948(2008).
[CrossRef]

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824-15835 (2007).
[CrossRef] [PubMed]

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse re-shaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
[CrossRef] [PubMed]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617-7622 (2006).
[CrossRef] [PubMed]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gb/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776-1778 (2005).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

Genty, G.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24, 1771-1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

Godbout, N.

Gu, X.

Guryanov, A.

Hammani, K.

K. Hammani, C. Finot, B. Kibler, and G. Millot, “Soliton generation in a microstructured fiber by fourth-order scalar modulation instability,” IEEE Photon. J. 1, 205-212 (2009).
[CrossRef]

Harper, P.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, “Generation of triangular-shaped optical pulses in normally dispersive fibre,” J. Opt. 12, 035205 (2010).
[CrossRef]

Hartung, A.

Harvey, J. D.

Hayes, J. R.

Heidt, A. M.

Hirooka, T.

T. Hirooka and M. Nakazawa, “All-optical 40 GHz time-domain Fourier transformation using XPM with a dark parabolic pulse,” IEEE Photon. Technol. Lett. 20, 1869-1871 (2008).
[CrossRef]

T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498-500 (2004).
[CrossRef] [PubMed]

Hooper, L. E.

Horak, P.

Ibsen, M.

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, “An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper,” IEEE Photon. Technol. Lett. 20, 1461-1463 (2008).
[CrossRef]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617-7622 (2006).
[CrossRef] [PubMed]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse re-shaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746-752 (2001).
[CrossRef]

Ilday, F. Ö.

F. Ö. Ilday, J. Buckley, F. W. Wise, and W. G. Clark, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Joly, N.

Karlsson, M.

Kawanishi, S.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

Kibler, B.

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482-1488 (2009).
[CrossRef]

K. Hammani, C. Finot, B. Kibler, and G. Millot, “Soliton generation in a microstructured fiber by fourth-order scalar modulation instability,” IEEE Photon. J. 1, 205-212 (2009).
[CrossRef]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938-1948(2008).
[CrossRef]

Kimmel, M.

Knight, J. C.

Kracht, D.

Krok, P.

Kruglov, V.

Kruglov, V. I.

V. I. Kruglov and J. D. Harvey, “Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541-2550(2006).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Lacroix, S.

Latkin, A. I.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, “Generation of triangular-shaped optical pulses in normally dispersive fibre,” J. Opt. 12, 035205 (2010).
[CrossRef]

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26, 1492-1496 (2009).
[CrossRef]

S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “Passive nonlinear pulse shaping in normally dispersive fiber systems,” IEEE J. Quantum Electron. 44, 1196-1203 (2008).
[CrossRef]

R. S. Bhamber, S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” in Proceedings of the 34th European Conference on Optical Communication (IEEE, 2008), paper Th.1.B.2.
[CrossRef]

Leonhardt, R.

Li, J.

Lin, C.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989-991 (2006).
[CrossRef]

Lisak, M.

Mechin, D.

Millot, G.

K. Hammani, C. Finot, B. Kibler, and G. Millot, “Soliton generation in a microstructured fiber by fourth-order scalar modulation instability,” IEEE Photon. J. 1, 205-212 (2009).
[CrossRef]

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482-1488 (2009).
[CrossRef]

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824-15835 (2007).
[CrossRef] [PubMed]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gb/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776-1778 (2005).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

Mori, K.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

Morioka, T.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

Mosley, P. J.

Muir, A. C.

Mukasa, K.

Nakazawa, M.

T. Hirooka and M. Nakazawa, “All-optical 40 GHz time-domain Fourier transformation using XPM with a dark parabolic pulse,” IEEE Photon. Technol. Lett. 20, 1869-1871 (2008).
[CrossRef]

T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498-500 (2004).
[CrossRef] [PubMed]

Newbury, N. L.

K. L. Corwin, N. L. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Ng, T. T.

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, “An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper,” IEEE Photon. Technol. Lett. 20, 1461-1463 (2008).
[CrossRef]

Nijhof, J. H. B.

S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133, 1647-1656 (2002).
[CrossRef]

Novokshenov, V. Y.

S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133, 1647-1656 (2002).
[CrossRef]

Olsson, B. E.

Oron, D.

Park, Y.

Parmigiani, F.

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, “An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper,” IEEE Photon. Technol. Lett. 20, 1461-1463 (2008).
[CrossRef]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617-7622 (2006).
[CrossRef] [PubMed]

Petropoulos, P.

Pitois, S.

C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gb/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776-1778 (2005).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

Poletti, F.

Price, J. H. V.

Prochnow, O.

Provost, L.

Quiroga-Teixeiro, M. L.

Richardson, D. J.

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482-1488 (2009).
[CrossRef]

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, “An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper,” IEEE Photon. Technol. Lett. 20, 1461-1463 (2008).
[CrossRef]

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse re-shaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
[CrossRef] [PubMed]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617-7622 (2006).
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles,” Opt. Express 14, 4445-4451 (2006).
[CrossRef] [PubMed]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse re-shaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746-752 (2001).
[CrossRef]

Rigneault, H.

Roelens, M. A. F.

Rohwer, E. G.

Ruehl, A.

Russell, J. S.

Saruwatari, M.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

Schwoerer, H.

Shreenath, A.

Shu, C.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989-991 (2006).
[CrossRef]

Sysoliatin, A.

Takara, H.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

Takushima, Y.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989-991 (2006).
[CrossRef]

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Trebino, R.

Tse, M. L. V.

Turitsyn, S. K.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, “Generation of triangular-shaped optical pulses in normally dispersive fibre,” J. Opt. 12, 035205 (2010).
[CrossRef]

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26, 1492-1496 (2009).
[CrossRef]

S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “Passive nonlinear pulse shaping in normally dispersive fiber systems,” IEEE J. Quantum Electron. 44, 1196-1203 (2008).
[CrossRef]

S. Boscolo and S. K. Turitsyn, “All-optical signal regeneration by temporal slicing of nonlinearly flattened optical waveform,” IEEE Photon. Technol. Lett. 17, 1235-1237 (2005).
[CrossRef]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Time domain all-optical signal processing at a RZ optical receiver,” Opt. Express 13, 6217-6227 (2005).
[CrossRef] [PubMed]

S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133, 1647-1656 (2002).
[CrossRef]

R. S. Bhamber, S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” in Proceedings of the 34th European Conference on Optical Communication (IEEE, 2008), paper Th.1.B.2.
[CrossRef]

Wabnitz, S.

Wadsworth, W. J.

Wandt, D.

Wang, H.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, “Generation of triangular-shaped optical pulses in normally dispersive fibre,” J. Opt. 12, 035205 (2010).
[CrossRef]

Weber, K.

K. L. Corwin, N. L. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Whitham, G. B.

G. B. Whitham, Linear and Nonlinear Waves, 1st ed. (Wiley Interscience, 1974).

Windeler, R. S.

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. L. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Wise, F. W.

F. Ö. Ilday, J. Buckley, F. W. Wise, and W. G. Clark, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Wong, G. K. L.

Electron. Lett. (2)

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989-991 (2006).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “Passive nonlinear pulse shaping in normally dispersive fiber systems,” IEEE J. Quantum Electron. 44, 1196-1203 (2008).
[CrossRef]

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482-1488 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

IEEE Photon. J. (1)

K. Hammani, C. Finot, B. Kibler, and G. Millot, “Soliton generation in a microstructured fiber by fourth-order scalar modulation instability,” IEEE Photon. J. 1, 205-212 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S. Boscolo and S. K. Turitsyn, “All-optical signal regeneration by temporal slicing of nonlinearly flattened optical waveform,” IEEE Photon. Technol. Lett. 17, 1235-1237 (2005).
[CrossRef]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

T. Hirooka and M. Nakazawa, “All-optical 40 GHz time-domain Fourier transformation using XPM with a dark parabolic pulse,” IEEE Photon. Technol. Lett. 20, 1869-1871 (2008).
[CrossRef]

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, “An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper,” IEEE Photon. Technol. Lett. 20, 1461-1463 (2008).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. (2)

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, “Generation of triangular-shaped optical pulses in normally dispersive fibre,” J. Opt. 12, 035205 (2010).
[CrossRef]

B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of parabolic optical pulses,” J. Opt. 12, 015202(2010).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Express (12)

C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13, 3236-3241 (2005).
[CrossRef] [PubMed]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617-7622 (2006).
[CrossRef] [PubMed]

Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15, 9584-9599 (2007).
[CrossRef] [PubMed]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Time domain all-optical signal processing at a RZ optical receiver,” Opt. Express 13, 6217-6227 (2005).
[CrossRef] [PubMed]

C. Aguergaray, D. Mechin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680-8687 (2010).
[CrossRef] [PubMed]

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824-15835 (2007).
[CrossRef] [PubMed]

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse re-shaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775-3787(2011).
[CrossRef] [PubMed]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902-4907 (2011).
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles,” Opt. Express 14, 4445-4451 (2006).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742-7749(2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (3)

F. Ö. Ilday, J. Buckley, F. W. Wise, and W. G. Clark, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

K. L. Corwin, N. L. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

Theor. Math. Phys. (1)

S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133, 1647-1656 (2002).
[CrossRef]

Other (4)

R. S. Bhamber, S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” in Proceedings of the 34th European Conference on Optical Communication (IEEE, 2008), paper Th.1.B.2.
[CrossRef]

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006).
[CrossRef]

G. B. Whitham, Linear and Nonlinear Waves, 1st ed. (Wiley Interscience, 1974).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Convex dispersion profile for PCF under consideration. Pumping occurs at the extremum of dispersion. This profile is similar to that experimentally realized in [37].

Fig. 2
Fig. 2

Characteristic curves [Eq. (7a)] for | Ω 0 | 2 N 2 ξ 0 = 400 and δ Ω 0 2 / 6 = 0.5 (solid) and δ = 0 (dashed). These values correspond to reasonable values used in simulations of N 2 2 × 10 5 and δ 2 × 10 5 . The characteristic curves plotted are for | τ 0 | = 0 (black), 1 (blue), 2 (red), and 3 (green).

Fig. 3
Fig. 3

Power reduction factor [Eq. (8)] for Ω 0 2 N 2 ξ 0 = 400 , δ Ω 0 2 / 6 = 0.5 , and | τ 0 | = 0 (black), 0.5 (cyan), 1 (blue), 2 (red), and 3 (green).

Fig. 4
Fig. 4

Temporal power profiles (a) without and (b) with FOD at propagation distances ξ = 0 (red), ξ = 0.0011 (green), ξ = 0.0022 (blue), ξ = 0.0033 (cyan), and ξ = 0.0041 (magenta). The parameters are N 2 = 2.6474 × 10 5 , (a)  δ = 0 , and (b)  δ = 2.3669 × 10 5 . The inset shown in (b) is the temporal profile (black) at ξ = 0.0028 and its fit to a triangular function (red circles).

Fig. 5
Fig. 5

Spectral power profiles (a) without and (b) with FOD at propagation distances ξ = 0 (red), ξ = 0.0011 (green), ξ = 0.0022 (blue), ξ = 0.0033 (cyan), and ξ = 0.0041 (magenta). The parameters are the same as in Fig. 4 and ω is normalized frequency.

Fig. 6
Fig. 6

Longitudinal evolutions of the (a) misfit parameter to a parabolic temporal shape with no FOD (dashed) and a triangular temporal shape with FOD (solid) and the (b) RMS spectral bandwidth without (dashed) and with (solid) FOD. The parameters are δ = 0 or δ = 2.3669 × 10 5 and N 2 = 2.6474 × 10 5 .

Fig. 7
Fig. 7

Longitudinal evolutions of the misfit parameter to a triangular temporal shape for varying values of (a) δ and (b)  N 2 . S = S * / 2 (blue), 2 S * / 3 (cyan), S * (dashed), 3 S * / 2 (red), and 2 S * (black), with (a)  S * = δ * = 2.3669 × 10 5 and N 2 = 2.6474 × 10 5 and (b)  S * = N * 2 = 2.6474 × 10 5 and δ = 2.3669 × 10 5 .

Fig. 8
Fig. 8

(a) Temporal and (b) spectral intensity profiles for N 2 = N * 2 / 2 , N * 2 , and 2 N * 2 , with N * 2 = 2.6474 × 10 5 . For N 2 = 2 N * 2 , a best fit triangular temporal shape is also shown (dashed). The temporal profiles shown are taken at the circled points of Fig. 7b, and the spectral profiles are shown at points of maximum flatness. The parameter δ = 2.3669 × 10 5 .

Fig. 9
Fig. 9

Spectrotemporal plots at propagation distance ξ = 0.0013 for initial chirp-free (a) parabolic and (b) hyperbolic- secant intensity profiles with the same FWHM pulse duration and energy. Note that the parabolic initial condition keeps a monotonic chirp across the pulse profile, whereas the initial hyperbolic-secant pulse does not.

Fig. 10
Fig. 10

(a) Temporal and (b) spectral powers at ξ = 0.0013 for parabolic (black), Gaussian (green), and hyperbolic-secant (red) initial conditions. Note the high oscillations induced for the initial Gaussian and hyperbolic-secant pulses.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

i u ξ 1 2 u τ τ + N 2 | u | 2 u = δ 24 u τ τ τ τ ,
ϕ ξ = 1 2 [ P τ τ P Ω 2 ] + N 2 P + δ 24 R 1 ,
P ξ = [ P Ω ] τ δ 12 R 2 ,
R 1 = 1 P ( P τ τ τ τ 6 [ P τ Ω 2 ] τ ) + Ω 4 3 Ω τ 2 4 Ω Ω τ τ ,
R 2 = 2 P ( 2 [ P τ τ Ω ] τ + [ P τ Ω τ ] τ ) [ P ( 2 Ω 3 Ω τ τ ) ] τ .
ϕ ξ = 1 2 Ω 2 ( 1 + δ 12 Ω 2 ) + N 2 P ,
P ξ = Ω ( 1 + δ 6 Ω 2 ) P τ + Ω τ ( 1 + δ 2 Ω 2 ) P .
Ω ( ξ , τ ) 2 C 0 τ 2 N 2 τ ( 1 2 C 0 2 N 2 ( 1 + δ C 0 2 τ 2 ) ) ξ .
d τ d ξ = Ω ( 1 + δ 6 Ω 2 ) ,
d P d ξ = Ω τ ( 1 + δ 2 Ω 2 ) P .
ξ ( τ , τ 0 ) = 1 Ω 0 log ( k τ 1 + δ 6 Ω 0 2 τ 2 ) ,
P ( ξ , τ 0 ) = P ( 0 , τ 0 ) e Ω 0 ξ × R ( ξ , τ 0 ) ,
R ( ξ , τ 0 ) = [ δ 6 Ω 0 2 k 2 e 2 Ω 0 ξ δ 6 Ω 0 2 k 2 ] 3 / 2 e 3 Ω 0 ξ
M S 2 = d t ( P P S ) 2 d t P 2 , S = p , T ,

Metrics