Abstract

We show that complete population inversion can be obtained in a micromaser even in the presence of large detuning. This spectacular effect is due to nonadiabatic transitions induced in the atomic system when the atom crosses the cavity. This effect is shown to depend strongly on the shape of the cavity mode and the axial atomic position.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
    [CrossRef] [PubMed]
  2. P. Filipowicz, J. Javanainen, and P. Meystre, “Theory of a microscopic maser,” Phys. Rev. A 34, 3077–3087 (1986).
    [CrossRef] [PubMed]
  3. L. A. Lugiato, M. O. Scully, and H. Walther, “Connection between microscopic and macroscopic maser theory,” Phys. Rev. A 36, 740–743 (1987).
    [CrossRef] [PubMed]
  4. P. Meystre, G. Rempe, and H. Walther, “Very-low-temperature behavior of a micromaser,” Opt. Lett. 13, 1078–1080 (1988).
    [CrossRef] [PubMed]
  5. I. Ashraf, J. Gea-Banacloche, and M. S. Zubairy, “Theory of the two-photon micromaser: photon statistics,” Phys. Rev. A 42, 6704–6712 (1990).
    [CrossRef] [PubMed]
  6. M. O. Scully, H. Walther, G. S. Agarwal, T. Quang, and W. Schleich, “Micromaser spectrum,” Phys. Rev. A 44, 5992–5996 (1991).
    [CrossRef] [PubMed]
  7. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
    [CrossRef]
  8. M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899–1902 (1987).
    [CrossRef] [PubMed]
  9. F. Le Kien, G. M. Meyer, M. O. Scully, H. Walther, and S.-Y. Zhu, “Two-mode micromaser operating on three-level atoms,” Phys. Rev. A 49, 1367–1377 (1994).
    [CrossRef]
  10. J. Larson and S. Stenholm, “Validity of adiabaticity in cavity QED,” Phys. Rev. A 73, 033805 (2006).
    [CrossRef]
  11. T. Bastin and J. Martin, “Detuning effects in the one-photon mazer,” Phys. Rev. A 67, 053804 (2003).
    [CrossRef]
  12. M. O. Scully, G. M. Meyer, and H. Walther, “Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity,” Phys. Rev. Lett. 76, 4144–4148 (1996).
    [CrossRef] [PubMed]
  13. B. W. Shore, The Theory of Coherent Atomic Excitation(Wiley, 1990).
  14. G. S. Vasilev and N. V. Vitanov, “Complete population transfer by a zero-area pulse,” Phys. Rev. A 73, 023416 (2006).
    [CrossRef]
  15. H.-G. Hong, W. Seo, M. Lee, Y. Song, Y.-T. Chough, J.-H. Lee, and K. An, “Atomic Šolc filter: multi-resonant photoemission via periodic poling of atom-cavity coupling constant,” Opt. Express 17, 15455–15467 (2009).
    [CrossRef] [PubMed]
  16. W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
    [CrossRef]
  17. F. A. Hashmi and M. A. Bouchene, “Phase control of nonadiabatic optical transitions,” Phys. Rev. A 79, 025401(2009).
    [CrossRef]
  18. F. A. Hashmi and M. A. Bouchene, “Nonadiabatic optical transitions as a turn-on switch for pulse shaping,” Phys. Rev. A 82, 043432 (2010).
    [CrossRef]

2010 (2)

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

F. A. Hashmi and M. A. Bouchene, “Nonadiabatic optical transitions as a turn-on switch for pulse shaping,” Phys. Rev. A 82, 043432 (2010).
[CrossRef]

2009 (2)

2006 (2)

G. S. Vasilev and N. V. Vitanov, “Complete population transfer by a zero-area pulse,” Phys. Rev. A 73, 023416 (2006).
[CrossRef]

J. Larson and S. Stenholm, “Validity of adiabaticity in cavity QED,” Phys. Rev. A 73, 033805 (2006).
[CrossRef]

2003 (1)

T. Bastin and J. Martin, “Detuning effects in the one-photon mazer,” Phys. Rev. A 67, 053804 (2003).
[CrossRef]

1999 (1)

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

1996 (1)

M. O. Scully, G. M. Meyer, and H. Walther, “Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity,” Phys. Rev. Lett. 76, 4144–4148 (1996).
[CrossRef] [PubMed]

1994 (1)

F. Le Kien, G. M. Meyer, M. O. Scully, H. Walther, and S.-Y. Zhu, “Two-mode micromaser operating on three-level atoms,” Phys. Rev. A 49, 1367–1377 (1994).
[CrossRef]

1991 (1)

M. O. Scully, H. Walther, G. S. Agarwal, T. Quang, and W. Schleich, “Micromaser spectrum,” Phys. Rev. A 44, 5992–5996 (1991).
[CrossRef] [PubMed]

1990 (2)

I. Ashraf, J. Gea-Banacloche, and M. S. Zubairy, “Theory of the two-photon micromaser: photon statistics,” Phys. Rev. A 42, 6704–6712 (1990).
[CrossRef] [PubMed]

B. W. Shore, The Theory of Coherent Atomic Excitation(Wiley, 1990).

1988 (1)

1987 (2)

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899–1902 (1987).
[CrossRef] [PubMed]

L. A. Lugiato, M. O. Scully, and H. Walther, “Connection between microscopic and macroscopic maser theory,” Phys. Rev. A 36, 740–743 (1987).
[CrossRef] [PubMed]

1986 (1)

P. Filipowicz, J. Javanainen, and P. Meystre, “Theory of a microscopic maser,” Phys. Rev. A 34, 3077–3087 (1986).
[CrossRef] [PubMed]

1985 (1)

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[CrossRef] [PubMed]

Agarwal, G. S.

M. O. Scully, H. Walther, G. S. Agarwal, T. Quang, and W. Schleich, “Micromaser spectrum,” Phys. Rev. A 44, 5992–5996 (1991).
[CrossRef] [PubMed]

An, K.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

H.-G. Hong, W. Seo, M. Lee, Y. Song, Y.-T. Chough, J.-H. Lee, and K. An, “Atomic Šolc filter: multi-resonant photoemission via periodic poling of atom-cavity coupling constant,” Opt. Express 17, 15455–15467 (2009).
[CrossRef] [PubMed]

Ashraf, I.

I. Ashraf, J. Gea-Banacloche, and M. S. Zubairy, “Theory of the two-photon micromaser: photon statistics,” Phys. Rev. A 42, 6704–6712 (1990).
[CrossRef] [PubMed]

Bastin, T.

T. Bastin and J. Martin, “Detuning effects in the one-photon mazer,” Phys. Rev. A 67, 053804 (2003).
[CrossRef]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Bouchene, M. A.

F. A. Hashmi and M. A. Bouchene, “Nonadiabatic optical transitions as a turn-on switch for pulse shaping,” Phys. Rev. A 82, 043432 (2010).
[CrossRef]

F. A. Hashmi and M. A. Bouchene, “Phase control of nonadiabatic optical transitions,” Phys. Rev. A 79, 025401(2009).
[CrossRef]

Brune, M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899–1902 (1987).
[CrossRef] [PubMed]

Choi, W.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

Chough, Y.-T.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

H.-G. Hong, W. Seo, M. Lee, Y. Song, Y.-T. Chough, J.-H. Lee, and K. An, “Atomic Šolc filter: multi-resonant photoemission via periodic poling of atom-cavity coupling constant,” Opt. Express 17, 15455–15467 (2009).
[CrossRef] [PubMed]

Dasari, R. R.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

Davidovich, L.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899–1902 (1987).
[CrossRef] [PubMed]

Fang-Yen, C.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

Feld, M. S.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

Filipowicz, P.

P. Filipowicz, J. Javanainen, and P. Meystre, “Theory of a microscopic maser,” Phys. Rev. A 34, 3077–3087 (1986).
[CrossRef] [PubMed]

Gea-Banacloche, J.

I. Ashraf, J. Gea-Banacloche, and M. S. Zubairy, “Theory of the two-photon micromaser: photon statistics,” Phys. Rev. A 42, 6704–6712 (1990).
[CrossRef] [PubMed]

Goy, P.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899–1902 (1987).
[CrossRef] [PubMed]

Haroche, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899–1902 (1987).
[CrossRef] [PubMed]

Hashmi, F. A.

F. A. Hashmi and M. A. Bouchene, “Nonadiabatic optical transitions as a turn-on switch for pulse shaping,” Phys. Rev. A 82, 043432 (2010).
[CrossRef]

F. A. Hashmi and M. A. Bouchene, “Phase control of nonadiabatic optical transitions,” Phys. Rev. A 79, 025401(2009).
[CrossRef]

Hong, H.-G.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

H.-G. Hong, W. Seo, M. Lee, Y. Song, Y.-T. Chough, J.-H. Lee, and K. An, “Atomic Šolc filter: multi-resonant photoemission via periodic poling of atom-cavity coupling constant,” Opt. Express 17, 15455–15467 (2009).
[CrossRef] [PubMed]

Javanainen, J.

P. Filipowicz, J. Javanainen, and P. Meystre, “Theory of a microscopic maser,” Phys. Rev. A 34, 3077–3087 (1986).
[CrossRef] [PubMed]

Larson, J.

J. Larson and S. Stenholm, “Validity of adiabaticity in cavity QED,” Phys. Rev. A 73, 033805 (2006).
[CrossRef]

Le Kien, F.

F. Le Kien, G. M. Meyer, M. O. Scully, H. Walther, and S.-Y. Zhu, “Two-mode micromaser operating on three-level atoms,” Phys. Rev. A 49, 1367–1377 (1994).
[CrossRef]

Lee, J.-H.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

H.-G. Hong, W. Seo, M. Lee, Y. Song, Y.-T. Chough, J.-H. Lee, and K. An, “Atomic Šolc filter: multi-resonant photoemission via periodic poling of atom-cavity coupling constant,” Opt. Express 17, 15455–15467 (2009).
[CrossRef] [PubMed]

Lee, M.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

H.-G. Hong, W. Seo, M. Lee, Y. Song, Y.-T. Chough, J.-H. Lee, and K. An, “Atomic Šolc filter: multi-resonant photoemission via periodic poling of atom-cavity coupling constant,” Opt. Express 17, 15455–15467 (2009).
[CrossRef] [PubMed]

Lugiato, L. A.

L. A. Lugiato, M. O. Scully, and H. Walther, “Connection between microscopic and macroscopic maser theory,” Phys. Rev. A 36, 740–743 (1987).
[CrossRef] [PubMed]

Martin, J.

T. Bastin and J. Martin, “Detuning effects in the one-photon mazer,” Phys. Rev. A 67, 053804 (2003).
[CrossRef]

Meschede, D.

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[CrossRef] [PubMed]

Meyer, G. M.

M. O. Scully, G. M. Meyer, and H. Walther, “Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity,” Phys. Rev. Lett. 76, 4144–4148 (1996).
[CrossRef] [PubMed]

F. Le Kien, G. M. Meyer, M. O. Scully, H. Walther, and S.-Y. Zhu, “Two-mode micromaser operating on three-level atoms,” Phys. Rev. A 49, 1367–1377 (1994).
[CrossRef]

Meystre, P.

P. Meystre, G. Rempe, and H. Walther, “Very-low-temperature behavior of a micromaser,” Opt. Lett. 13, 1078–1080 (1988).
[CrossRef] [PubMed]

P. Filipowicz, J. Javanainen, and P. Meystre, “Theory of a microscopic maser,” Phys. Rev. A 34, 3077–3087 (1986).
[CrossRef] [PubMed]

Müller, G.

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[CrossRef] [PubMed]

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Quang, T.

M. O. Scully, H. Walther, G. S. Agarwal, T. Quang, and W. Schleich, “Micromaser spectrum,” Phys. Rev. A 44, 5992–5996 (1991).
[CrossRef] [PubMed]

Raimond, J. M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899–1902 (1987).
[CrossRef] [PubMed]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Rempe, G.

Schleich, W.

M. O. Scully, H. Walther, G. S. Agarwal, T. Quang, and W. Schleich, “Micromaser spectrum,” Phys. Rev. A 44, 5992–5996 (1991).
[CrossRef] [PubMed]

Scully, M. O.

M. O. Scully, G. M. Meyer, and H. Walther, “Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity,” Phys. Rev. Lett. 76, 4144–4148 (1996).
[CrossRef] [PubMed]

F. Le Kien, G. M. Meyer, M. O. Scully, H. Walther, and S.-Y. Zhu, “Two-mode micromaser operating on three-level atoms,” Phys. Rev. A 49, 1367–1377 (1994).
[CrossRef]

M. O. Scully, H. Walther, G. S. Agarwal, T. Quang, and W. Schleich, “Micromaser spectrum,” Phys. Rev. A 44, 5992–5996 (1991).
[CrossRef] [PubMed]

L. A. Lugiato, M. O. Scully, and H. Walther, “Connection between microscopic and macroscopic maser theory,” Phys. Rev. A 36, 740–743 (1987).
[CrossRef] [PubMed]

Seo, W.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

H.-G. Hong, W. Seo, M. Lee, Y. Song, Y.-T. Chough, J.-H. Lee, and K. An, “Atomic Šolc filter: multi-resonant photoemission via periodic poling of atom-cavity coupling constant,” Opt. Express 17, 15455–15467 (2009).
[CrossRef] [PubMed]

Shore, B. W.

B. W. Shore, The Theory of Coherent Atomic Excitation(Wiley, 1990).

Song, Y.

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

H.-G. Hong, W. Seo, M. Lee, Y. Song, Y.-T. Chough, J.-H. Lee, and K. An, “Atomic Šolc filter: multi-resonant photoemission via periodic poling of atom-cavity coupling constant,” Opt. Express 17, 15455–15467 (2009).
[CrossRef] [PubMed]

Stenholm, S.

J. Larson and S. Stenholm, “Validity of adiabaticity in cavity QED,” Phys. Rev. A 73, 033805 (2006).
[CrossRef]

Vasilev, G. S.

G. S. Vasilev and N. V. Vitanov, “Complete population transfer by a zero-area pulse,” Phys. Rev. A 73, 023416 (2006).
[CrossRef]

Vitanov, N. V.

G. S. Vasilev and N. V. Vitanov, “Complete population transfer by a zero-area pulse,” Phys. Rev. A 73, 023416 (2006).
[CrossRef]

Walther, H.

M. O. Scully, G. M. Meyer, and H. Walther, “Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity,” Phys. Rev. Lett. 76, 4144–4148 (1996).
[CrossRef] [PubMed]

F. Le Kien, G. M. Meyer, M. O. Scully, H. Walther, and S.-Y. Zhu, “Two-mode micromaser operating on three-level atoms,” Phys. Rev. A 49, 1367–1377 (1994).
[CrossRef]

M. O. Scully, H. Walther, G. S. Agarwal, T. Quang, and W. Schleich, “Micromaser spectrum,” Phys. Rev. A 44, 5992–5996 (1991).
[CrossRef] [PubMed]

P. Meystre, G. Rempe, and H. Walther, “Very-low-temperature behavior of a micromaser,” Opt. Lett. 13, 1078–1080 (1988).
[CrossRef] [PubMed]

L. A. Lugiato, M. O. Scully, and H. Walther, “Connection between microscopic and macroscopic maser theory,” Phys. Rev. A 36, 740–743 (1987).
[CrossRef] [PubMed]

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[CrossRef] [PubMed]

Zhu, S.-Y.

F. Le Kien, G. M. Meyer, M. O. Scully, H. Walther, and S.-Y. Zhu, “Two-mode micromaser operating on three-level atoms,” Phys. Rev. A 49, 1367–1377 (1994).
[CrossRef]

Zubairy, M. S.

I. Ashraf, J. Gea-Banacloche, and M. S. Zubairy, “Theory of the two-photon micromaser: photon statistics,” Phys. Rev. A 42, 6704–6712 (1990).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (11)

I. Ashraf, J. Gea-Banacloche, and M. S. Zubairy, “Theory of the two-photon micromaser: photon statistics,” Phys. Rev. A 42, 6704–6712 (1990).
[CrossRef] [PubMed]

M. O. Scully, H. Walther, G. S. Agarwal, T. Quang, and W. Schleich, “Micromaser spectrum,” Phys. Rev. A 44, 5992–5996 (1991).
[CrossRef] [PubMed]

F. Le Kien, G. M. Meyer, M. O. Scully, H. Walther, and S.-Y. Zhu, “Two-mode micromaser operating on three-level atoms,” Phys. Rev. A 49, 1367–1377 (1994).
[CrossRef]

J. Larson and S. Stenholm, “Validity of adiabaticity in cavity QED,” Phys. Rev. A 73, 033805 (2006).
[CrossRef]

T. Bastin and J. Martin, “Detuning effects in the one-photon mazer,” Phys. Rev. A 67, 053804 (2003).
[CrossRef]

W. Seo, H.-G. Hong, M. Lee, Y. Song, Y.-T. Chough, W. Choi, C. Fang-Yen, R. R. Dasari, M. S. Feld, J.-H. Lee, and K. An, “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser,” Phys. Rev. A 81, 053824 (2010).
[CrossRef]

F. A. Hashmi and M. A. Bouchene, “Phase control of nonadiabatic optical transitions,” Phys. Rev. A 79, 025401(2009).
[CrossRef]

F. A. Hashmi and M. A. Bouchene, “Nonadiabatic optical transitions as a turn-on switch for pulse shaping,” Phys. Rev. A 82, 043432 (2010).
[CrossRef]

P. Filipowicz, J. Javanainen, and P. Meystre, “Theory of a microscopic maser,” Phys. Rev. A 34, 3077–3087 (1986).
[CrossRef] [PubMed]

L. A. Lugiato, M. O. Scully, and H. Walther, “Connection between microscopic and macroscopic maser theory,” Phys. Rev. A 36, 740–743 (1987).
[CrossRef] [PubMed]

G. S. Vasilev and N. V. Vitanov, “Complete population transfer by a zero-area pulse,” Phys. Rev. A 73, 023416 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[CrossRef] [PubMed]

M. O. Scully, G. M. Meyer, and H. Walther, “Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity,” Phys. Rev. Lett. 76, 4144–4148 (1996).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899–1902 (1987).
[CrossRef] [PubMed]

Other (1)

B. W. Shore, The Theory of Coherent Atomic Excitation(Wiley, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Excited state population as a function of the axial position of the atom in the cavity. See text for field and atom parameters. The insets are zoomed near particular positions ( z = 0 and z / w 0 = 2.64 ).

Fig. 2
Fig. 2

Temporal behavior of (a) field parameters [field envelope e ( ρ ( t ) , z = 0 ) is dotted–dashed curve, mixing angle θ n is dotted curve]; (b) nonadiabatic coupling T θ n ; and (c) excited state population for z = 0 (waist plane). See text for other parameter values.

Fig. 3
Fig. 3

Same as Fig. 2, but z / w 0 = 2.64 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( | + , n | , n ) = ( cos ( θ n ( t ) / 2 ) sin ( θ n ( t ) / 2 ) sin ( θ n ( t ) / 2 ) cos ( θ n ( t ) / 2 ) ) ( | g , n + 1 | e , n ) ,
T ( α , n α + , n ) = ( i Ω n ( T ) / 2 T θ n T θ n i Ω n ( T ) / 2 ) ( α , n α + , n ) ( T ) ,

Metrics