Abstract

In this study, we analyze the relations between radiation properties and sensitivity of optical nanoantennas and their shape and design parameters using nanocircuit concepts. We apply these findings to optimize the sensitivity and bandwidth of printed plasmonic nanoantennas for their potential use in optical communications and label-free biosensing applications. In comparison to conventional plasmonic optical sensors, which mainly rely on localized surface plasmons, our design rules suggest that optical nanoantennas may provide enhanced sensitivity for biomedical applications, and our analytical solutions based on their equivalent nanocircuit model may provide an efficient tool for their design optimization. Several numerical simulations are presented to verify utility of this design method, providing excellent agreement between numerical and analytical results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  2. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
    [CrossRef] [PubMed]
  3. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  4. Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
    [CrossRef]
  5. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007).
    [CrossRef] [PubMed]
  6. R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
    [CrossRef]
  7. A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008).
    [CrossRef] [PubMed]
  8. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
    [CrossRef] [PubMed]
  9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  10. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007).
    [CrossRef] [PubMed]
  11. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  12. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
    [CrossRef]
  13. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
    [CrossRef] [PubMed]
  14. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
    [CrossRef] [PubMed]
  15. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
    [CrossRef] [PubMed]
  16. S. A. Choulis, M. K. Mathai, and V. E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88, 213503(2006).
    [CrossRef]
  17. J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
    [CrossRef] [PubMed]
  18. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009).
    [CrossRef] [PubMed]
  19. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
    [CrossRef]
  20. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
    [CrossRef] [PubMed]
  21. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
    [CrossRef]
  22. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
    [CrossRef] [PubMed]
  23. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  24. M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photon. 2, 201–203 (2008).
    [CrossRef]
  25. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
    [CrossRef] [PubMed]
  26. C. K. M. Fung, N. Xi, B. Shanker, K. W. C. Lai, and H. Chen, “Dipole and bowtie antenna for carbon nanotube (CNT) based infrared sensors,” in Proceedings of IEEE Conference on Nanotechnology Materials and Devices (IEEE, 2009), pp. 87–90.
  27. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702(2007).
    [CrossRef] [PubMed]
  28. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
    [CrossRef] [PubMed]
  29. A. Alù and N. Engheta, “On certain design criteria for nanoantennas in the visible,” J. Comput. Theor. Nanosci. 6, 2009–2015(2009).
    [CrossRef]
  30. CST Microwave Studio 2010, CST of America, Inc..
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  32. A. Alù, A. Salandrino, and N. Engheta, “Parallel, series, and intermediate interconnections of optical nanocircuit elements. 2. Nanocircuit and physical interpretation,” J. Opt. Soc. Am. B 24, 3014–3022 (2007).
    [CrossRef]
  33. A. Alù and N. Engheta, “Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy,” New J. Phys. 11, 013026 (2009).
    [CrossRef]
  34. J. W. Becker, G. N. Reeke, J. L. Wang, B. A. Cunningham, and G. M. Edelman, “The covalent and three dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides,” J. Biol. Chem. 250, 1513–1524, (1975).
    [PubMed]
  35. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
    [CrossRef]
  36. H. Sun, A. Chen, and L. R. Dalton, “Enhanced evanescent confinement in multiple-slot waveguides and its application in biochemical sensing,” IEEE Photon. J. 1, 48–57 (2009).
    [CrossRef]
  37. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef] [PubMed]
  38. A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
    [CrossRef]

2010 (2)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef] [PubMed]

CST Microwave Studio 2010, CST of America, Inc..

2009 (7)

A. Alù and N. Engheta, “On certain design criteria for nanoantennas in the visible,” J. Comput. Theor. Nanosci. 6, 2009–2015(2009).
[CrossRef]

C. K. M. Fung, N. Xi, B. Shanker, K. W. C. Lai, and H. Chen, “Dipole and bowtie antenna for carbon nanotube (CNT) based infrared sensors,” in Proceedings of IEEE Conference on Nanotechnology Materials and Devices (IEEE, 2009), pp. 87–90.

A. Alù and N. Engheta, “Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy,” New J. Phys. 11, 013026 (2009).
[CrossRef]

H. Sun, A. Chen, and L. R. Dalton, “Enhanced evanescent confinement in multiple-slot waveguides and its application in biochemical sensing,” IEEE Photon. J. 1, 48–57 (2009).
[CrossRef]

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009).
[CrossRef] [PubMed]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

2008 (9)

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[CrossRef]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[CrossRef]

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photon. 2, 201–203 (2008).
[CrossRef]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[CrossRef] [PubMed]

2007 (5)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702(2007).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007).
[CrossRef] [PubMed]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007).
[CrossRef] [PubMed]

A. Alù, A. Salandrino, and N. Engheta, “Parallel, series, and intermediate interconnections of optical nanocircuit elements. 2. Nanocircuit and physical interpretation,” J. Opt. Soc. Am. B 24, 3014–3022 (2007).
[CrossRef]

2006 (4)

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

S. A. Choulis, M. K. Mathai, and V. E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88, 213503(2006).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

2005 (6)

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

2004 (2)

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

1998 (1)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

1975 (1)

J. W. Becker, G. N. Reeke, J. L. Wang, B. A. Cunningham, and G. M. Edelman, “The covalent and three dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides,” J. Biol. Chem. 250, 1513–1524, (1975).
[PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[CrossRef] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “On certain design criteria for nanoantennas in the visible,” J. Comput. Theor. Nanosci. 6, 2009–2015(2009).
[CrossRef]

A. Alù and N. Engheta, “Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy,” New J. Phys. 11, 013026 (2009).
[CrossRef]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[CrossRef]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

A. Alù, A. Salandrino, and N. Engheta, “Parallel, series, and intermediate interconnections of optical nanocircuit elements. 2. Nanocircuit and physical interpretation,” J. Opt. Soc. Am. B 24, 3014–3022 (2007).
[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Bakker, R.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[CrossRef]

Bakker, R. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007).
[CrossRef] [PubMed]

Becker, J. W.

J. W. Becker, G. N. Reeke, J. L. Wang, B. A. Cunningham, and G. M. Edelman, “The covalent and three dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides,” J. Biol. Chem. 250, 1513–1524, (1975).
[PubMed]

Bek, A.

A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Biteen, J. S.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

Boltasseva, A.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[CrossRef]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007).
[CrossRef] [PubMed]

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Chen, A.

H. Sun, A. Chen, and L. R. Dalton, “Enhanced evanescent confinement in multiple-slot waveguides and its application in biochemical sensing,” IEEE Photon. J. 1, 48–57 (2009).
[CrossRef]

Chen, H.

C. K. M. Fung, N. Xi, B. Shanker, K. W. C. Lai, and H. Chen, “Dipole and bowtie antenna for carbon nanotube (CNT) based infrared sensors,” in Proceedings of IEEE Conference on Nanotechnology Materials and Devices (IEEE, 2009), pp. 87–90.

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Choong, V. E.

S. A. Choulis, M. K. Mathai, and V. E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88, 213503(2006).
[CrossRef]

Choulis, S. A.

S. A. Choulis, M. K. Mathai, and V. E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88, 213503(2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[CrossRef] [PubMed]

Cunningham, B. A.

J. W. Becker, G. N. Reeke, J. L. Wang, B. A. Cunningham, and G. M. Edelman, “The covalent and three dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides,” J. Biol. Chem. 250, 1513–1524, (1975).
[PubMed]

Dalton, L. R.

H. Sun, A. Chen, and L. R. Dalton, “Enhanced evanescent confinement in multiple-slot waveguides and its application in biochemical sensing,” IEEE Photon. J. 1, 48–57 (2009).
[CrossRef]

Deutsch, B.

Drachev, V. P.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[CrossRef]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007).
[CrossRef] [PubMed]

Edelman, G. M.

J. W. Becker, G. N. Reeke, J. L. Wang, B. A. Cunningham, and G. M. Edelman, “The covalent and three dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides,” J. Biol. Chem. 250, 1513–1524, (1975).
[PubMed]

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “On certain design criteria for nanoantennas in the visible,” J. Comput. Theor. Nanosci. 6, 2009–2015(2009).
[CrossRef]

A. Alù and N. Engheta, “Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy,” New J. Phys. 11, 013026 (2009).
[CrossRef]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[CrossRef]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

A. Alù, A. Salandrino, and N. Engheta, “Parallel, series, and intermediate interconnections of optical nanocircuit elements. 2. Nanocircuit and physical interpretation,” J. Opt. Soc. Am. B 24, 3014–3022 (2007).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702(2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Felderer, K.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Feldmann, J.

A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008).
[CrossRef] [PubMed]

Frey, H. G.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Fung, C. K. M.

C. K. M. Fung, N. Xi, B. Shanker, K. W. C. Lai, and H. Chen, “Dipole and bowtie antenna for carbon nanotube (CNT) based infrared sensors,” in Proceedings of IEEE Conference on Nanotechnology Materials and Devices (IEEE, 2009), pp. 87–90.

Garcia-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[CrossRef] [PubMed]

Garcia-Parajo, M. F.

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photon. 2, 201–203 (2008).
[CrossRef]

Greffet, J. J.

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

Gresillon, S.

Guckenberger, R.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Jansen, R.

A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[CrossRef] [PubMed]

Kildishev, A. V.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[CrossRef]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Klar, T. A.

A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008).
[CrossRef] [PubMed]

Koenderink, A. F.

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009).
[CrossRef] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007).
[CrossRef] [PubMed]

Lai, K. W. C.

C. K. M. Fung, N. Xi, B. Shanker, K. W. C. Lai, and H. Chen, “Dipole and bowtie antenna for carbon nanotube (CNT) based infrared sensors,” in Proceedings of IEEE Conference on Nanotechnology Materials and Devices (IEEE, 2009), pp. 87–90.

Liu, Z.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[CrossRef]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

Mathai, M. K.

S. A. Choulis, M. K. Mathai, and V. E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88, 213503(2006).
[CrossRef]

Mayilo, S.

A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008).
[CrossRef] [PubMed]

Mertens, H.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Pedersen, R. H.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[CrossRef]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007).
[CrossRef] [PubMed]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

Polman, A.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[CrossRef] [PubMed]

Reeke, G. N.

J. W. Becker, G. N. Reeke, J. L. Wang, B. A. Cunningham, and G. M. Edelman, “The covalent and three dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides,” J. Biol. Chem. 250, 1513–1524, (1975).
[PubMed]

Ringler, M.

A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008).
[CrossRef] [PubMed]

Salandrino, A.

A. Alù, A. Salandrino, and N. Engheta, “Parallel, series, and intermediate interconnections of optical nanocircuit elements. 2. Nanocircuit and physical interpretation,” J. Opt. Soc. Am. B 24, 3014–3022 (2007).
[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Shalaev, V. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[CrossRef]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007).
[CrossRef] [PubMed]

Shanker, B.

C. K. M. Fung, N. Xi, B. Shanker, K. W. C. Lai, and H. Chen, “Dipole and bowtie antenna for carbon nanotube (CNT) based infrared sensors,” in Proceedings of IEEE Conference on Nanotechnology Materials and Devices (IEEE, 2009), pp. 87–90.

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Sun, H.

H. Sun, A. Chen, and L. R. Dalton, “Enhanced evanescent confinement in multiple-slot waveguides and its application in biochemical sensing,” IEEE Photon. J. 1, 48–57 (2009).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

van Hulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007).
[CrossRef] [PubMed]

Wang, J. L.

J. W. Becker, G. N. Reeke, J. L. Wang, B. A. Cunningham, and G. M. Edelman, “The covalent and three dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides,” J. Biol. Chem. 250, 1513–1524, (1975).
[PubMed]

Witt, S.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Xi, N.

C. K. M. Fung, N. Xi, B. Shanker, K. W. C. Lai, and H. Chen, “Dipole and bowtie antenna for carbon nanotube (CNT) based infrared sensors,” in Proceedings of IEEE Conference on Nanotechnology Materials and Devices (IEEE, 2009), pp. 87–90.

Yee, S. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Yuan, H.-K.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

S. A. Choulis, M. K. Mathai, and V. E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88, 213503(2006).
[CrossRef]

IEEE Photon. J. (1)

H. Sun, A. Chen, and L. R. Dalton, “Enhanced evanescent confinement in multiple-slot waveguides and its application in biochemical sensing,” IEEE Photon. J. 1, 48–57 (2009).
[CrossRef]

J. Appl. Phys. (1)

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

J. Biol. Chem. (1)

J. W. Becker, G. N. Reeke, J. L. Wang, B. A. Cunningham, and G. M. Edelman, “The covalent and three dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides,” J. Biol. Chem. 250, 1513–1524, (1975).
[PubMed]

J. Comput. Theor. Nanosci. (1)

A. Alù and N. Engheta, “On certain design criteria for nanoantennas in the visible,” J. Comput. Theor. Nanosci. 6, 2009–2015(2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Langmuir (1)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Metamaterials (1)

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[CrossRef]

Nano Lett. (5)

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009).
[CrossRef] [PubMed]

A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007).
[CrossRef] [PubMed]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

Nat. Mater. (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photon. (3)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[CrossRef]

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photon. 2, 201–203 (2008).
[CrossRef]

New J. Phys. (1)

A. Alù and N. Engheta, “Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy,” New J. Phys. 11, 013026 (2009).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

Phys. Rev. Lett. (9)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Science (3)

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702(2007).
[CrossRef] [PubMed]

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

Other (2)

C. K. M. Fung, N. Xi, B. Shanker, K. W. C. Lai, and H. Chen, “Dipole and bowtie antenna for carbon nanotube (CNT) based infrared sensors,” in Proceedings of IEEE Conference on Nanotechnology Materials and Devices (IEEE, 2009), pp. 87–90.

CST Microwave Studio 2010, CST of America, Inc..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Nanoantenna geometries of interest, with the angle α ranging between 0 ° 0 and 180 ° , corresponding to (a) nanodipole, (b) nanobowtie, and (c) nanodimer antennas.

Fig. 2
Fig. 2

Nanocircuit model for the optical input impedance with different loads at the gap of the nanoantennas in Fig. 1. (a) Nanoantenna with one homogeneous nanoparticle at the gap, (b), (c) nanoantenna with two nanoparticles with different permittivity ε L 1 and ε L 2 connected in series (b) and parallel (c). The insets show the corresponding sketches of the different load configurations.

Fig. 3
Fig. 3

Variation of the resonance frequency with the load permittivity for different angles α, for two different gap sizes.

Fig. 4
Fig. 4

Comparison of numerical simulation (solid curves) and calculated input impedance using the semianalytical approach presented in the previous section (dashed curves).

Fig. 5
Fig. 5

Numerically calculated intrinsic impedance for the nanoantennas with gap dimension 5 nm × 10 nm × 20 nm for different antenna geometries, where the legend indicates the arm angle α. The dashed square region in (a) is enlarged in (b) in the vicinity of the resonance frequency f 0 .

Fig. 6
Fig. 6

Tuning the nanoantenna resonance frequency with (a) series loading and (b) parallel loading. The corresponding loading geometries at the gap are shown in the insets of Figs. 2b, 2c, respectively. With increasing the filling of the material with ε L 2 = 2 ε 0 , the resonance frequency shifts to a higher value.

Fig. 7
Fig. 7

(a) Refractive index change of 60 ° nanoantenna with no series and parallel components inserted in the gap region, (b) the relative scattered intensity drop due to the change of index at the gap.

Fig. 8
Fig. 8

Comparison of simulated radiation efficiencies for different geometries, varying the angle α and the gap dimensions.

Fig. 9
Fig. 9

3 dB bandwidth extracted from the simulated nanoantenna polarizability. The red dots represent the bandwidth of a large gap with dimension 10 nm × 10 nm × 20 nm . The black dots represent the bandwidth of a small feedgap with dimension 5 nm × 10 nm × 20 nm .

Fig. 10
Fig. 10

(left) Normalized polarizability for gap size 5 nm × 10 nm × 20 nm with (a)  α = 0 ° , (b)  α = 60 ° , (c)  α = 90 ° , (d)  α = 180 ° ; (center) reflection coefficient when the nanoantennas are fed at the gap; (right) corresponding field plots at resonance for load permittivity ε L = 3 ε 0 .

Tables (1)

Tables Icon

Table 1 Nanoantenna Arm Length

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Z in = 1 1 R i X i ω C ,
r 0 = R 1 + C ω ( 2 X + C ( R 2 + X 2 ) ω ) ,
x 0 = X C ( R 2 + X 2 ) ω 1 + C ω ( 2 X + C ( R 2 + X 2 ) ω ) .
R = r 0 1 + C ω ( 2 x 0 + C ( r 0 2 + x 0 2 ) ω ) ,
X = x 0 + C ( r 0 2 + x 0 2 ) ω 1 + C ω ( 2 x 0 + C ( r 0 2 + x 0 2 ) ω ) ,
r l = g 2 R g 2 2 g S X ε L ω + S 2 ( R 2 + X 2 ) ε L 2 ω 2 ,
x l = g [ g X S ( R 2 + X 2 ) ε L ω ] g 2 2 g S X ε L ω + S 2 ( R 2 + X 2 ) ε L 2 ω 2 .
ω 0 = g X S ( R 2 + X 2 ) ε L .
1 X ε L ω 0 S g = 1 Im [ Z L ] | ω 0 ,
S = ω 0 ε L g X S ( R 2 + X 2 ) ε L 2 | ω 0 .
C = S ( g ζ ) ε L 1 + ζ ε L 2 .
ω 0 = g X ε L 2 + X ζ ( ε L 1 ε L 2 ) S ( R 2 + X 2 ) ε L 1 ε L 2 ,
S = ω 0 ε L 2 X ζ S ( R 2 + X 2 ) ε L 2 2 ,
ω 0 = X ( R 2 + X 2 ) [ ε L 1 w + ξ ( ε L 2 ε L 1 ) ] ,
S = ω 0 ε L 2 X ξ ( R 2 + X 2 ) [ ε L 1 ( w ξ ) + ε L 2 ξ ] 2 .

Metrics