Abstract

All-fiber in-line single-mode–multimode–single-mode (SMS) and single-mode–tapered-multimode–single-mode (STMS) fiber structures are investigated. A wide-angle beam propagation method in cylindrical coordinates is developed and employed for numerical simulations of the light propagation performance of such fiber devices. The effect of strong mode interference on the performance of the devices is studied and verified numerically; results indicate that the proposed STMS structure can be exploited for measuring a broad refractive index range with reasonable high resolution, compared with the conventional SMS structure.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
    [CrossRef]
  2. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
    [CrossRef]
  3. Q. Wang and G. Farrell, “All-fiber multimode-interference based refractometer sensor: proposal and design,” Opt. Lett. 31, 317–319 (2006).
    [CrossRef] [PubMed]
  4. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiberr multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549(2006).
    [CrossRef] [PubMed]
  5. G. R. Hadley, “Wide-angle beam propagation using Padé approximant operators,” Opt. Lett. 17, 1426–1428 (1992).
    [CrossRef] [PubMed]
  6. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, 1990).
  7. G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17, 1743–1745 (1992).
    [CrossRef] [PubMed]
  8. L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  9. R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, “Planar antiresonant reflecting optical waveguides as integrated optical refractometer,” IEEE Sens. J. 3, 652–657 (2003).
    [CrossRef]
  10. G. J. Veldhuis, L. E. W. van der Veen, and P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 17, 857–864 (1999).
    [CrossRef]
  11. P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode-fiber-based refractometer,” Appl. Opt. 48, 6044–6049 (2009).
    [CrossRef] [PubMed]
  12. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
    [CrossRef]
  13. Y. Jung, G. Brambilla, and D. J. Richardson, “Comparative study of the effective single-mode operational bandwidth in subwavelength optical wires and conventional single-mode fibers,” Opt. Express 17, 16619–16624 (2009).
    [CrossRef] [PubMed]
  14. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14, 12510–12516 (2006).
    [CrossRef] [PubMed]
  15. G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
    [CrossRef]
  16. R. Sarkissian, S. Farrell, and J. D. O’Brien, “Spectroscopy of a tapered-fiber photonic crystal waveguide coupler,” Opt. Express 17, 10738–10747 (2009).
    [CrossRef] [PubMed]
  17. Frank Vollmer and Stephen Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [CrossRef] [PubMed]
  18. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  19. Denis Ðonlagić, “Inline higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006).
    [CrossRef]
  20. Joel Villatoro, David Monzón-Hernández, and Donato Luna-Moreno, “Inline optical fiber sensors based on cladded multimode tapered fibers,” Appl. Opt. 43, 5933–5938 (2004).
    [CrossRef] [PubMed]

2010 (1)

G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
[CrossRef]

2009 (3)

2008 (2)

Frank Vollmer and Stephen Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

2006 (4)

2004 (2)

2003 (2)

A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, “Planar antiresonant reflecting optical waveguides as integrated optical refractometer,” IEEE Sens. J. 3, 652–657 (2003).
[CrossRef]

1999 (1)

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

1992 (3)

1990 (1)

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, 1990).

Arnold, Stephen

Frank Vollmer and Stephen Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Bernini, R.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, “Planar antiresonant reflecting optical waveguides as integrated optical refractometer,” IEEE Sens. J. 3, 652–657 (2003).
[CrossRef]

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Brambilla, G.

Campopiano, S.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, “Planar antiresonant reflecting optical waveguides as integrated optical refractometer,” IEEE Sens. J. 3, 652–657 (2003).
[CrossRef]

de Boer, C.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, “Planar antiresonant reflecting optical waveguides as integrated optical refractometer,” IEEE Sens. J. 3, 652–657 (2003).
[CrossRef]

Ðonlagic, Denis

Farrell, G.

Farrell, S.

Flannery, B.

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, 1990).

Gu, X.

Guo, C.

Gupta, B. D.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

Hadley, G. R.

Johnson, E. G.

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
[CrossRef]

A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

Jung, Y.

Lambeck, P. V.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Liu, Z.

Luna-Moreno, Donato

Mehta, A.

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
[CrossRef]

A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

Mohammed, W. S.

Monzón-Hernández, David

O’Brien, J. D.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Press, W.

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, 1990).

Richardson, D. J.

Sarkissian, R.

Sarro, P. M.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, “Planar antiresonant reflecting optical waveguides as integrated optical refractometer,” IEEE Sens. J. 3, 652–657 (2003).
[CrossRef]

Semenova, Y.

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Teukolsky, S.

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, 1990).

Ti, Y.

van der Veen, L. E. W.

Veldhuis, G. J.

Verma, R. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

Vetterling, W.

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, 1990).

Villatoro, Joel

Vollmer, Frank

Frank Vollmer and Stephen Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Wang, P.

Wang, Q.

Wu, Q.

Yang, J.

Yuan, L.

Zeni, L.

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, “Planar antiresonant reflecting optical waveguides as integrated optical refractometer,” IEEE Sens. J. 3, 652–657 (2003).
[CrossRef]

Zheng, J.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

IEEE Sens. J. (1)

R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, “Planar antiresonant reflecting optical waveguides as integrated optical refractometer,” IEEE Sens. J. 3, 652–657 (2003).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. (1)

G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
[CrossRef]

Nat. Methods (1)

Frank Vollmer and Stephen Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Other (1)

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, 1990).

Supplementary Material (1)

» Media 1: MPG (6023 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic configuration of the SMS structure.

Fig. 2
Fig. 2

Configuration of the SMS fiber-based refractometer.

Fig. 3
Fig. 3

Amplitude distribution of the propagating light field as a function of propagation distance with an MMF length of 50 mm when the cladding refractive index is (a)  n cl = 1.4271 , and (b)  n ethanol = 1.354 , respectively, and the operating wavelength is 1550 nm .

Fig. 4
Fig. 4

Calculated transmission loss to the output SMF fiber as a function of propagation distance with an MMF length of 50 mm when the cladding refractive index is n cl = 1.4271 (blue curve), and n ethanol = 1.354 (red curve), the operating wavelength is 1550 nm . Inset: a zoomed region in around the propagation distance of 40 45 mm of the MMF section, which shows the details of the shifts of the self-imaging positions due to the change of the cladding refractive index.

Fig. 5
Fig. 5

(Media 1) Video of mode interference within the MMF fiber section when the refractive index of the cladding is n cl = 1.4271 at a wavelength of 1550 nm , the propagation distance is 50000 μm along the MMF fiber section.

Fig. 6
Fig. 6

Transmission losses as a function of the length of the MMF section and the refractive indices under test for lengths in the region of (a)  10 mm , (b)  20 mm , and (c)  30 mm .

Fig. 7
Fig. 7

Relationship between transmission loss and refractive index of surrounding liquid for selected MMF lengths.

Fig. 8
Fig. 8

(a) Schematic configuration of the STMS structure; (b) structure of a tapered MMF, illustrating the terminology used in the paper.

Fig. 9
Fig. 9

(a) Amplitude distribution of the propagating light, (b) calculated coupling loss to the output SMF fiber as a function of propagation distance.

Fig. 10
Fig. 10

Relationship between transmission loss and refractive index at chosen lengths of tapered MMF.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

2 E z 2 + 2 E r 2 + 1 r E r + k 2 n 2 ( r , z ) E = 0 ,
E ^ z = j 2 k n 0 P E ^ 1 j 2 k n 0 E ^ z ,
E ^ l + 1 = ( 1 + a n P ) ( 1 + a n 1 P ) ( 1 + a 1 P ) ( 1 + a n * P ) ( 1 + a n 1 * P ) ( 1 + a 1 * P ) E ^ l ,
a i * η E m 1 l + i n + [ 1 + a i * ς ] E m l + i n + a i * η + E m + 1 l + i n = a i η E m 1 l + i 1 n + [ 1 + a i ς ] E m 1 l + i 1 n + a i η + E m + 1 l + i 1 n ,
[ 1 + a i * ( k 2 ( n 2 n 0 2 ) 4 Δ r 2 ) ] E 0 l + i n + a i * 4 Δ r 2 E 1 l + i n = [ 1 + a i ( k 2 ( n 2 n 0 2 ) 4 Δ r 2 ) ] E 0 l + i 1 n + a i [ 4 Δ r 2 ] E 1 l + i 1 n .
L s ( z ) = 10 log 10 ( | 0 E ( r , z ) f ( r ) r d r | 2 0 | E ( r , z ) | 2 r d r 0 | f ( r ) | 2 r d r ) ,
0 | E ( r , 0 ) | 2 r d r = 0 | ψ m ( r ) | 2 r d r , m = 1 , 2 , ,
E ( r , 0 ) = m = 1 M c m ψ m ( r ) ,
c m = 0 E ( r , 0 ) ψ m ( r ) r d r 0 ψ m ( r ) ψ m ( r ) r d r .
E ( r , z ) = m = 1 M c m ψ m ( r ) exp ( i β m z ) ,
R ( Z ) = R 0 · exp ( Z L 0 ) ,
Z 0 = L 0 · ln ( R 0 R w ) ,

Metrics