Abstract

We propose an atomic filter configuration with large tunability based on selective optical-pumping-induced anisotropy. Theoretical simulation shows that the filter structure, by using a counterpropagating pump, can achieve higher transmission and a narrower passband than that using a copropagating pump due to the elimination of Doppler broadening. In addition, the filter’s tunability over 100 GHz via Aulter–Townes splitting and filtering characteristics is analyzed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988).
    [CrossRef]
  2. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
    [CrossRef]
  3. H. Chen, M. A. White, David A. Krugger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996).
    [CrossRef] [PubMed]
  4. C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
    [CrossRef]
  5. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperature with narrowband filters,” Opt. Lett. 30, 890–892 (2005).
    [CrossRef] [PubMed]
  6. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007).
    [CrossRef] [PubMed]
  7. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
    [CrossRef] [PubMed]
  8. F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145–18151 (2008).
    [CrossRef] [PubMed]
  9. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846–848 (1991).
    [CrossRef] [PubMed]
  10. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical fitler,” Opt. Lett. 16, 867–869 (1991).
    [CrossRef] [PubMed]
  11. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995).
    [CrossRef] [PubMed]
  12. Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123–5129 (1997).
    [CrossRef]
  13. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
    [CrossRef]
  14. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
    [CrossRef]
  15. L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
    [CrossRef]
  16. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995).
    [CrossRef] [PubMed]
  17. L. D. Turner, V. Karagnanov, and P. J. O. Teubner, “Sub-Doppler bandwidth atomic atomic optical filter,” Opt. Lett. 27, 500–502(2002).
    [CrossRef]
  18. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009).
    [CrossRef] [PubMed]
  19. Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009).
    [CrossRef]
  20. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069–2075 (1982).
    [CrossRef] [PubMed]

2009 (2)

2008 (2)

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145–18151 (2008).
[CrossRef] [PubMed]

2007 (1)

2005 (1)

2002 (2)

2001 (2)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

1998 (1)

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

1997 (1)

Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123–5129 (1997).
[CrossRef]

1996 (1)

1995 (3)

1991 (2)

1988 (1)

J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988).
[CrossRef]

1982 (1)

Abad, M.

Allocca, D. M.

Alpers, M.

Bao, X.-H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Benson, K.

Billmers, R. I.

Bloom, S. H.

Cere, A.

Cerè, A.

Chen, H.

Chen, Z.-B.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Contarino, V. M.

Dick, D. J.

Duan, M.

Fricke-Begemann, C.

Gan, J.

Gayen, S. K.

Gelbwachs, J. A.

J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988).
[CrossRef]

He, Z.

Herczfeld, P. R.

Höffner, J.

Jia, X.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Karagnanov, V.

Kong, J.

Korevaar, E.

Krugger, David A.

Li, Y.

Liu, C. S.

Liu, S.

Ma, Z.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

Menders, J.

Mitchell, M. W.

Neergaard-Nielsen, J. S.

Nielsen, B. M.

Pan, J.-W.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Parigi, V.

Peng, Y.

Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123–5129 (1997).
[CrossRef]

Polzik, E. S.

Predojevic, A.

Qian, Y.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Scharpf, W. J.

Shay, T. M.

She, C. Y.

Squicciarini, M. F.

Steinberg, A. M.

Takahashi, H.

Tang, J.

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
[CrossRef]

Teubner, P. J. O.

Turner, L. D.

Vistnes, A. I.

Wang, Q.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
[CrossRef]

White, M. A.

Wolfgramm, F.

Wu, H.

Xing, X.

Yang, G.

Yang, J.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Yang, T.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Yeh, P.

Yuan, P.

Zhang, H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
[CrossRef]

Zhang, Y.

Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

Zheng, L.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988).
[CrossRef]

IEEE. J. Quantum Electron. (1)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123–5129 (1997).
[CrossRef]

Opt. Commun. (2)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (9)

A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009).
[CrossRef] [PubMed]

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846–848 (1991).
[CrossRef] [PubMed]

D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical fitler,” Opt. Lett. 16, 867–869 (1991).
[CrossRef] [PubMed]

L. D. Turner, V. Karagnanov, and P. J. O. Teubner, “Sub-Doppler bandwidth atomic atomic optical filter,” Opt. Lett. 27, 500–502(2002).
[CrossRef]

C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
[CrossRef]

J. Höffner and C. Fricke-Begemann, “Accurate lidar temperature with narrowband filters,” Opt. Lett. 30, 890–892 (2005).
[CrossRef] [PubMed]

R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995).
[CrossRef] [PubMed]

S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995).
[CrossRef] [PubMed]

H. Chen, M. A. White, David A. Krugger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Related energy levels of Rb 87 .

Fig. 2
Fig. 2

Peak transmission (solid curve) and FWHM (dashed curve) as a function of the pump’s Rabi frequency when the pump is copropagating with the probe. The temperature is 380 K and the cell length is 7.5 cm .

Fig. 3
Fig. 3

Peak transmission (solid curve) and FWHM (dashed curve) as a function of the pump’s Rabi frequency when the pump is counterpropagating with the probe. Other parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

(a) Absorption coefficient, (b) transmission as a function of the probe detuning. The pump beam is on resonance with 4 S 1 / 2 4 P 1 / 2 transition at I pump = 0.8 MW cm 2 ( Ω C = 91 GHz ) and T = 200 ° C .

Fig. 5
Fig. 5

Related K 39 energy levels under Aulter–Townes splitting.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H = 2 [ 0 Ω c 0 Ω c * 2 Δ c Ω p 0 Ω p * 2 ( Δ c + Δ p ) ] .
ρ t = 1 i [ H , ρ ] 1 2 { Γ , ρ } .
ρ 32 = Ω p Ω c 2 [ 2 γ 21 ( Δ c + Δ p ) + γ 2 Δ c + i ( 2 γ 21 γ 31 + γ 2 γ 21 ) ] [ 4 ( γ 32 + i Δ p ) ( γ 31 + i ( Δ c + Δ p ) ) + Ω c 2 ] [ 2 γ 2 ( Δ c 2 + γ 21 2 ) + 2 γ 21 Ω c 2 ] .
χ = 2 μ 23 2 N 0 ρ 32 / ( ε 0 Ω p ) .
χ = 2 μ 2 2 N 0 π u ε 0 Ω p ρ 32 e v 2 / u 2 d v .
T r = 1 2 exp ( α L ) [ cosh ( Δ α L ) cos ( 2 ρ L ) ] .

Metrics