Abstract

We have investigated the thermally induced depolarization degree in long-rod cubic crystals of classes 23 and m3 as a function of the heated region and the probe beam radii as well as on crystal orientation. We extended the photoelastic anisotropy parameter and introduced a second anisotropy parameter. Three new specific crystal orientations were defined. General theorems on specific orientations were proved. The best and the worst orientations were determined. They are close or equal to the specific ones in most cases.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075–7082 (2007).
    [CrossRef] [PubMed]
  2. K. Contag, M. Larionov, A. Giesen, V. Peters, E. Mix, and L. Fornasiero, “Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides,” in Advanced Solid-State Lasers, Vol.  50 of OSA Trends Optics Photonics(Optical Society of America, 2001), paper WC4.
  3. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
    [CrossRef]
  4. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29, 391–393 (2004).
    [CrossRef] [PubMed]
  5. S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15, 16966–16971 (2007).
    [CrossRef] [PubMed]
  6. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009).
    [CrossRef] [PubMed]
  7. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
    [CrossRef] [PubMed]
  8. O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.
  9. A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration,” Opt. Lett. 35, 511–513 (2010).
    [CrossRef] [PubMed]
  10. A. Shirakawa, K. Takaichi, H. Yagi, J.-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11, 2911–2916 (2003).
    [CrossRef] [PubMed]
  11. A. Shirakawa, K. Takaichi, H. Yagi, M. Tanisho, J.-F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “First mode-locked ceramic laser: femtosecond Yb3+:Y2O3 ceramic laser,” Laser Phys. 14, 1375–1381 (2004).
  12. J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2 W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29, 1212–1214 (2004).
    [CrossRef] [PubMed]
  13. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14, 12832–12838 (2006).
    [CrossRef] [PubMed]
  14. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17, 3353–3361 (2009).
    [CrossRef] [PubMed]
  15. J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1964).
  16. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).
  17. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
    [CrossRef]
  18. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
    [CrossRef]
  19. W. Koechner, “Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal,” Appl. Opt. 9, 1429–1434 (1970).
    [CrossRef] [PubMed]
  20. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
    [CrossRef]
  21. M. A. Karr, “Nd:YAlG laser cavity loss due to an internal Brewster polarizer,” Appl. Opt. 10, 893–895 (1971).
    [CrossRef] [PubMed]
  22. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
    [CrossRef]
  23. L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
    [CrossRef]
  24. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80, 3048–3050 (2002).
    [CrossRef]
  25. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002).
    [CrossRef]
  26. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94(2005).
    [CrossRef]
  27. I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17, 5496–5500 (2009).
    [CrossRef] [PubMed]
  28. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
    [CrossRef] [PubMed]
  29. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971).
    [CrossRef]
  30. S. Bochner and K. Chandrasekharan, Fourier Transforms(Princeton University Press, 1949).
  31. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).
  32. F. W. Quelle, “Thermal distortion of diffraction-limited optical elements,” Appl. Opt. 5, 633–637 (1966).
    [CrossRef] [PubMed]

2010

2009

2007

2006

2005

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94(2005).
[CrossRef]

2004

2003

2002

1980

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

1979

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
[CrossRef]

1971

1970

W. Koechner, “Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal,” Appl. Opt. 9, 1429–1434 (1970).
[CrossRef] [PubMed]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

1966

Andreev, N.

Baer, C. R.

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

Baer, C. R. E.

Bisson, J.-F.

A. Shirakawa, K. Takaichi, H. Yagi, M. Tanisho, J.-F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “First mode-locked ceramic laser: femtosecond Yb3+:Y2O3 ceramic laser,” Laser Phys. 14, 1375–1381 (2004).

A. Shirakawa, K. Takaichi, H. Yagi, J.-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11, 2911–2916 (2003).
[CrossRef] [PubMed]

Bochner, S.

S. Bochner and K. Chandrasekharan, Fourier Transforms(Princeton University Press, 1949).

Chandrasekharan, K.

S. Bochner and K. Chandrasekharan, Fourier Transforms(Princeton University Press, 1949).

Contag, K.

K. Contag, M. Larionov, A. Giesen, V. Peters, E. Mix, and L. Fornasiero, “Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides,” in Advanced Solid-State Lasers, Vol.  50 of OSA Trends Optics Photonics(Optical Society of America, 2001), paper WC4.

Engqvist, A. G.

Erbert, G.

Fiebig, C.

Fornasiero, L.

K. Contag, M. Larionov, A. Giesen, V. Peters, E. Mix, and L. Fornasiero, “Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides,” in Advanced Solid-State Lasers, Vol.  50 of OSA Trends Optics Photonics(Optical Society of America, 2001), paper WC4.

Foster, J. D.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Giesen, A.

K. Contag, M. Larionov, A. Giesen, V. Peters, E. Mix, and L. Fornasiero, “Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides,” in Advanced Solid-State Lasers, Vol.  50 of OSA Trends Optics Photonics(Optical Society of America, 2001), paper WC4.

Golling, M.

Goodier, J. N.

S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).

Griebner, U.

Heckl, O. H.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009).
[CrossRef] [PubMed]

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

Hosokawa, S.

Huber, G.

A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration,” Opt. Lett. 35, 511–513 (2010).
[CrossRef] [PubMed]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009).
[CrossRef] [PubMed]

S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15, 16966–16971 (2007).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075–7082 (2007).
[CrossRef] [PubMed]

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

Ivanov, I. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94(2005).
[CrossRef]

Kaminskii, A.

Kaminskii, A. A.

Karr, M. A.

Keller, U.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009).
[CrossRef] [PubMed]

S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15, 16966–16971 (2007).
[CrossRef] [PubMed]

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

Khazanov, E.

Khazanov, E. A.

Klopp, P.

Koechner, W.

W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971).
[CrossRef]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

W. Koechner, “Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal,” Appl. Opt. 9, 1429–1434 (1970).
[CrossRef] [PubMed]

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).

Kong, J.

Kränkel, C.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009).
[CrossRef] [PubMed]

S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15, 16966–16971 (2007).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075–7082 (2007).
[CrossRef] [PubMed]

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

Larionov, M.

K. Contag, M. Larionov, A. Giesen, V. Peters, E. Mix, and L. Fornasiero, “Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides,” in Advanced Solid-State Lasers, Vol.  50 of OSA Trends Optics Photonics(Optical Society of America, 2001), paper WC4.

Lu, J.

Maas, D. J. H. C.

Marchese, S. V.

Massey, G. A.

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

Mehl, O.

Mix, E.

K. Contag, M. Larionov, A. Giesen, V. Peters, E. Mix, and L. Fornasiero, “Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides,” in Advanced Solid-State Lasers, Vol.  50 of OSA Trends Optics Photonics(Optical Society of America, 2001), paper WC4.

Mukhin, I. B.

I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17, 5496–5500 (2009).
[CrossRef] [PubMed]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94(2005).
[CrossRef]

Musha, M.

Noriyuki, M.

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1964).

Osterink, L. M.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Palashov, O.

Palashov, O. V.

I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17, 5496–5500 (2009).
[CrossRef] [PubMed]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94(2005).
[CrossRef]

Paschke, K.

Petermann, K.

A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration,” Opt. Lett. 35, 511–513 (2010).
[CrossRef] [PubMed]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009).
[CrossRef] [PubMed]

S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15, 16966–16971 (2007).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075–7082 (2007).
[CrossRef] [PubMed]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29, 391–393 (2004).
[CrossRef] [PubMed]

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

Peters, R.

A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration,” Opt. Lett. 35, 511–513 (2010).
[CrossRef] [PubMed]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009).
[CrossRef] [PubMed]

S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15, 16966–16971 (2007).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075–7082 (2007).
[CrossRef] [PubMed]

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

Peters, V.

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29, 391–393 (2004).
[CrossRef] [PubMed]

K. Contag, M. Larionov, A. Giesen, V. Peters, E. Mix, and L. Fornasiero, “Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides,” in Advanced Solid-State Lasers, Vol.  50 of OSA Trends Optics Photonics(Optical Society of America, 2001), paper WC4.

Petrov, T. S.

Petrov, V.

Poteomkin, A.

Quelle, F. W.

Reitze, D.

Rice, D. K.

W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971).
[CrossRef]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

Saraceno, C. J.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009).
[CrossRef] [PubMed]

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

Schmidt, A.

Sergeev, A.

Shashkin, V. V.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

Shirakawa, A.

Shoji, I.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80, 3048–3050 (2002).
[CrossRef]

Soms, L. N.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
[CrossRef]

Südmeyer, T.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009).
[CrossRef] [PubMed]

S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15, 16966–16971 (2007).
[CrossRef] [PubMed]

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

Taira, T.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80, 3048–3050 (2002).
[CrossRef]

Takaichi, K.

Tang, D. Y.

Tanisho, M.

A. Shirakawa, K. Takaichi, H. Yagi, M. Tanisho, J.-F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “First mode-locked ceramic laser: femtosecond Yb3+:Y2O3 ceramic laser,” Laser Phys. 14, 1375–1381 (2004).

Tarasov, A. A.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
[CrossRef]

Timoshenko, S.

S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).

Tokurakawa, M.

Ueda, K.

Yagi, H.

Yanagitani, T.

Appl. Opt.

Appl. Phys. B

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

Appl. Phys. Lett.

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80, 3048–3050 (2002).
[CrossRef]

IEEE J. Quantum Electron.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

J. Appl. Phys.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

J. Opt. Soc. Am.

JETP Lett.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94(2005).
[CrossRef]

Laser Phys.

A. Shirakawa, K. Takaichi, H. Yagi, M. Tanisho, J.-F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “First mode-locked ceramic laser: femtosecond Yb3+:Y2O3 ceramic laser,” Laser Phys. 14, 1375–1381 (2004).

Opt. Express

Opt. Lett.

Sov. J. Quantum Electron.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
[CrossRef]

Other

K. Contag, M. Larionov, A. Giesen, V. Peters, E. Mix, and L. Fornasiero, “Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides,” in Advanced Solid-State Lasers, Vol.  50 of OSA Trends Optics Photonics(Optical Society of America, 2001), paper WC4.

J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1964).

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).

O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.

S. Bochner and K. Chandrasekharan, Fourier Transforms(Princeton University Press, 1949).

S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Transition from crystallographic ( a , b , c ) to laboratory ( x , y , z ) reference frame. α, β are Euler angles. (b) Cylindrical optical element, incident, and transmitted radiation. ( x , y , z ) are Cartesian coordinates, ( r , φ , z ) are cylindrical coordinates, ( i 1 , i 2 ) are eigen polarizations of the sample.

Fig. 2
Fig. 2

Specific orientations for (a)–(d) conventional and (e)–(h) novel ( ξ d = 1 ) crystals for (a), (b), (e), (f)  ξ = 3.2 and (c), (d), (g), (h)  ξ = 1.7 on (a), (c), (e), (g) the plane of Euler angles and on (b), (d), (f), (h) the surface of a cube of elementary cell: [ 001 ] (solid squares), [ 011 ] (solid circles), [ 111 ] (solid triangles), [ [ A ] ] (open squares), [ [ B ] ] (open circles), [ [ C ] ] (open rhombs).

Fig. 3
Fig. 3

(a) β as a function of p for α = 0 for [ [ A ] ] orientations (squares) and for [ [ B ] ] orientations (circles). (b) Domain of existence of [ [ C ] ] orientation (gray).

Fig. 4
Fig. 4

Integral depolarization degree γ as a function of r h / R at (a), (c), (e) weak ( σ 0 = 0.1 ) and (b), (d), (f) strong birefringence at r 0 = r h , ξ = 3.2 ; (a), (b)  ξ d = 0 , (c), (d)  ξ d = 1 , (e), (f)  ξ d = 3 for specific orientations: [ 001 ] (solid squares), [ 011 ] (solid circles), [ 111 ] (solid triangles), [ [ A ] ] (open squares), [ [ B ] ] (open circles), and for the best and worst (thick gray curves) of all possible orientations.

Fig. 5
Fig. 5

Integral depolarization degree γ as a function of ξ d in the case of (a), (c), (e) weak ( σ 0 = 0.1 ) and (b), (d), (f) strong birefringence at r h = r 0 = 0.7 R for (a), (b)  ξ = 3.2 , (c), (d)  ξ = 0.3 , (e), (f)  ξ = 1.2 for specific orientations: [ 001 ] (solid squares), [ 011 ] (solid circles), [ 111 ] (solid triangles), [ [ A ] ] (open squares), [ [ B ] ] (open circles), [ [ C ] ] (open rhombs), and for the best and worst (thick gray curves) of all possible orientations.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

π = ( π 11 π 12 π 21 0 0 0 π 21 π 11 π 12 0 0 0 π 12 π 21 π 11 0 0 0 0 0 0 π 44 0 0 0 0 0 0 π 44 0 0 0 0 0 0 π 44 ) .
Δ B = π σ ,
Γ = sin 2 ( δ / 2 ) sin 2 [ 2 ( θ Ψ ) ] , γ = S Γ | E in | 2 d S / S | E in | 2 d S ,
cot 2 Ψ = Δ B x x Δ B y y 2 Δ B x y , δ = k 0 L n 0 3 2 2 Δ B x y sin 2 Ψ ,
Δ B x x Δ B y y = A 1 ( ξ , ξ d ; α , β ) Σ ( r ) + [ A 2 ( ξ ; α , β ) cos 2 φ + A 3 ( ξ , ξ d ; α , β ) sin 2 φ ] Δ ( r ) , 2 Δ B x y = B 1 ( ξ , ξ d ; α , β ) Σ ( r ) + [ B 2 ( ξ , ξ d ; α , β ) cos 2 φ + B 3 ( ξ ; α , β ) sin 2 φ ] Δ ( r ) ,
Σ ( r ) = π S ( σ r r + σ ϕ ϕ 2 σ z z ) = σ 0 { u h / 2 u ln u h , u 1 , u h / 2 1 ln ( u u h ) , u > 1 , Δ ( r ) = π S ( σ r r σ ϕ ϕ ) = σ 0 { u , u 1 , 1 / u 2 , u > 1 , σ 0 = π S α T E P 8 π κ ( 1 ν ) ,
A 1 = ( 1 ξ ) a 1 ( α , β ) + ξ d a 2 ( α , β ) , B 1 = ( 1 ξ ) b 1 ( α , β ) + ξ d b 2 ( α , β ) , A 2 = ξ + ( 1 ξ ) a 3 ( α , β ) , B 2 = ( 1 ξ ) c 1 ( α , β ) + ξ d c 2 ( α , β ) , A 3 = ( 1 ξ ) c 1 ( α , β ) ξ d c 2 ( α , β ) , B 3 = ξ + ( 1 ξ ) b 3 ( α , β ) ,
a 1 = [ sin 2 2 α ( 1 cos 4 β ) sin 2 2 β ] / 2 , b 1 = 1 / 4 · sin β sin 2 β sin 4 α , a 2 = cos 2 α cos 2 β , b 2 = sin 2 α cos β ( 1 3 cos 2 β ) / 2 , a 3 = [ 1 ( sin 2 2 α ) / 4 ] sin 4 β + cos 2 2 α cos 2 β , b 3 = sin 2 2 α cos 2 β , c 1 = sin 4 α cos β ( 1 + cos 2 β ) / 4 , c 2 = 3 / 4 · sin 2 α cos β sin 2 β
{ α = π k / 2 , cos 2 β = ( 1 ) k p A , or { cos 2 α = p A , β = π / 2 ,
p A = p ( | p | / p ) p 2 + 1 , p = ξ d / ( ξ 1 ) ,
{ α = π k / 2 , cos 2 β = ( 1 ) k p B , or { cos 2 α = p B , β = π / 2 ,
p B = { p , | p | < 1 , | p | / p , | p | 1 ,
{ 4 q ( sin 4 β + cos 2 β q ) sin 2 2 α sin 4 β [ q + 3 cos 2 β ( 1 + 3 p 2 / 4 ) ] = 0 , sin 2 α cos 2 β { q p ( 1 3 cos 2 β ) 2 cos 2 α sin 2 β [ q + cos 2 β ( 1 + 3 p 2 / 4 ) ] } = 0 , sin 2 2 α sin 2 β [ cos 2 β ( 1 3 cos 2 β ) ( 1 + 3 p 2 / 4 ) q ( 1 + cos 2 β ) ] + q ( 2 p cos 2 α cos 2 β + sin 2 2 β ) = 0 ,
{ a = π / 4 + π k / 2 , cos 2 β = ξ / ( ξ 1 ) , or { sin 2 2 a = 8 ξ / ( 1 2 ξ ) 2 , cos 2 β = 1 / ( 2 2 ξ ) .

Metrics