Abstract

We numerically investigate the photonic bandgaps as well as the transmission properties of a two-dimensional magnetic photonic crystal (PC) in the terahertz (THz) region by the plane wave expansion and finite-difference time-domain methods. The calculation predicts a magnetic PC waveguide that can work as a tunable filter with a bandwidth larger than 0.1THz, and its central frequency is from 0.83 to 1.03THz. It also shows that a magnetic PC can be used as a polarization controller with three functions, including controllable polarizing, polarization beam splitting, and ππ phase shifting.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon (IEEE, 2005), pp. 766–772.
  2. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008).
    [CrossRef] [PubMed]
  3. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007).
    [CrossRef]
  4. I. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wireless Compon. Lett. 18, 67–69 (2008).
    [CrossRef]
  5. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
    [CrossRef]
  6. H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101–106 (2009).
    [CrossRef]
  7. B. Wu, H. Zhang, P. Guo, Q. Wang, and S. J. Chang, “Multifunctional photonic crystal cross waveguide for terahertz waves,” J. Opt. Soc. Am. B 27, 505–511 (2010).
    [CrossRef]
  8. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer pitch Al gratings,” Opt. Lett. 34, 274–276 (2009).
    [CrossRef] [PubMed]
  9. L. L. Zhang, H. Zhong, C. Deng, C. L. Zhang, and Y. J. Zhao, “Terahertz wave polarization analyzer using birefringent materials,” Opt. Express 17, 20266–20271 (2009).
    [CrossRef] [PubMed]
  10. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
    [CrossRef] [PubMed]
  11. C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006).
    [CrossRef] [PubMed]
  12. C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2630–2635 (2004).
    [CrossRef]
  13. Y. G. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett. 31, 1534–1536 (2006).
    [CrossRef] [PubMed]
  14. T. D. Drysdale, I. S. Gregory, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
    [CrossRef]
  15. L. J. He and Z. Hong, “Terahertz wave switch based on silicon photonic crystals,” Appl. Opt. 46, 5034–5037 (2007).
    [CrossRef] [PubMed]
  16. H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
    [CrossRef]
  17. R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves 30, 1139–1147 (2009).
    [CrossRef]
  18. S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics (Plenum, 1981), Chap. 2.
  19. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997).
    [CrossRef]
  20. C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals,” Phys. Rev. B 61, 15523–11525 (2000).
    [CrossRef]
  21. A. SoltaniVala, B. Rezaei, and M. Kalafi, “Tunable defect modes in 2D photonic crystals by means of external magnetic fields,” Phys. B 405, 2996–2998 (2010).
    [CrossRef]
  22. J. X. Fu, R. J. Liu, and Z. Y. Li, “Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields,” Europhys. Lett. 89, 64003 (2010).
    [CrossRef]
  23. Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009).
    [CrossRef]
  24. G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010).
    [CrossRef]
  25. Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, and J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25, 3957–3960 (2008).
    [CrossRef]
  26. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
    [CrossRef] [PubMed]
  27. M. Nakajima, A. Namai, S. Ohkoshi, and T. Suemoto, “Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field,” Opt. Express 18, 18260–18268 (2010).
    [CrossRef] [PubMed]
  28. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998), Chap. 9.
  29. Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
    [CrossRef]
  30. J. van Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72, 020401 (2005).
    [CrossRef]

2010 (5)

B. Wu, H. Zhang, P. Guo, Q. Wang, and S. J. Chang, “Multifunctional photonic crystal cross waveguide for terahertz waves,” J. Opt. Soc. Am. B 27, 505–511 (2010).
[CrossRef]

A. SoltaniVala, B. Rezaei, and M. Kalafi, “Tunable defect modes in 2D photonic crystals by means of external magnetic fields,” Phys. B 405, 2996–2998 (2010).
[CrossRef]

J. X. Fu, R. J. Liu, and Z. Y. Li, “Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields,” Europhys. Lett. 89, 64003 (2010).
[CrossRef]

G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010).
[CrossRef]

M. Nakajima, A. Namai, S. Ohkoshi, and T. Suemoto, “Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field,” Opt. Express 18, 18260–18268 (2010).
[CrossRef] [PubMed]

2009 (7)

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
[CrossRef]

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009).
[CrossRef]

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer pitch Al gratings,” Opt. Lett. 34, 274–276 (2009).
[CrossRef] [PubMed]

L. L. Zhang, H. Zhong, C. Deng, C. L. Zhang, and Y. J. Zhao, “Terahertz wave polarization analyzer using birefringent materials,” Opt. Express 17, 20266–20271 (2009).
[CrossRef] [PubMed]

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101–106 (2009).
[CrossRef]

2008 (4)

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008).
[CrossRef] [PubMed]

I. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wireless Compon. Lett. 18, 67–69 (2008).
[CrossRef]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, and J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25, 3957–3960 (2008).
[CrossRef]

2007 (2)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007).
[CrossRef]

L. J. He and Z. Hong, “Terahertz wave switch based on silicon photonic crystals,” Appl. Opt. 46, 5034–5037 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

J. van Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72, 020401 (2005).
[CrossRef]

2004 (3)

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2630–2635 (2004).
[CrossRef]

T. D. Drysdale, I. S. Gregory, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[CrossRef]

H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[CrossRef]

2000 (1)

C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals,” Phys. Rev. B 61, 15523–11525 (2000).
[CrossRef]

1997 (1)

M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997).
[CrossRef]

Adebimpe, D.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon (IEEE, 2005), pp. 766–772.

Baraniuk, R. G.

Biswas, R.

M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997).
[CrossRef]

Bush, A. A.

G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010).
[CrossRef]

Chan, W. L.

Chang, S. J.

Chen, C. Y.

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2630–2635 (2004).
[CrossRef]

Chen, H. L.

Chen, P.

Chen, Y.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007).
[CrossRef]

Chu, Y. H.

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Cumming, D. R. S.

T. D. Drysdale, I. S. Gregory, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[CrossRef]

Deng, C.

Dressel, M.

J. van Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72, 020401 (2005).
[CrossRef]

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[CrossRef]

Duvillaret, L.

H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[CrossRef]

Earley, S.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007).
[CrossRef]

Ferguson, B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007).
[CrossRef]

Fu, J. X.

J. X. Fu, R. J. Liu, and Z. Y. Li, “Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields,” Europhys. Lett. 89, 64003 (2010).
[CrossRef]

Gallot, G.

Garet, F.

H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[CrossRef]

Ghattan, Z.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Gorshunov, B.

J. van Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72, 020401 (2005).
[CrossRef]

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[CrossRef]

Grischkowsky, D.

Guo, P.

Hangyo, M.

Hasek, T.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

He, L. J.

Ho, K. M.

M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997).
[CrossRef]

Hong, Z.

Hsieh, C. F.

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006).
[CrossRef] [PubMed]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2630–2635 (2004).
[CrossRef]

Ibraheem, I.

I. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wireless Compon. Lett. 18, 67–69 (2008).
[CrossRef]

Kalafi, M.

A. SoltaniVala, B. Rezaei, and M. Kalafi, “Tunable defect modes in 2D photonic crystals by means of external magnetic fields,” Phys. B 405, 2996–2998 (2010).
[CrossRef]

Kantner, C. L. S.

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Kee, C. S.

C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals,” Phys. Rev. B 61, 15523–11525 (2000).
[CrossRef]

Keenan, E.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon (IEEE, 2005), pp. 766–772.

Kim, J. E.

C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals,” Phys. Rev. B 61, 15523–11525 (2000).
[CrossRef]

Kirkland, L. V.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon (IEEE, 2005), pp. 766–772.

Koch, M.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

I. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wireless Compon. Lett. 18, 67–69 (2008).
[CrossRef]

Komandin, G. A.

G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010).
[CrossRef]

Kopschinski, O.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

Krumbholz, N.

I. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wireless Compon. Lett. 18, 67–69 (2008).
[CrossRef]

Kuzel, P.

H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[CrossRef]

Langner, C.

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Li, L. Y.

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
[CrossRef]

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, and J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25, 3957–3960 (2008).
[CrossRef]

Li, S.

Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009).
[CrossRef]

Li, Z. Y.

J. X. Fu, R. J. Liu, and Z. Y. Li, “Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields,” Europhys. Lett. 89, 64003 (2010).
[CrossRef]

Lim, H.

C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals,” Phys. Rev. B 61, 15523–11525 (2000).
[CrossRef]

Lin, Y. F.

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2630–2635 (2004).
[CrossRef]

Liu, H. B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007).
[CrossRef]

Liu, R. J.

J. X. Fu, R. J. Liu, and Z. Y. Li, “Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields,” Europhys. Lett. 89, 64003 (2010).
[CrossRef]

Liu, Y. L.

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
[CrossRef]

Martin, L. M.

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Masson, J. B.

Mittleman, D.

I. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wireless Compon. Lett. 18, 67–69 (2008).
[CrossRef]

Mittleman, D. M.

Moravec, M. L.

Mukhin, A.

J. van Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72, 020401 (2005).
[CrossRef]

Mulligan, R.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon (IEEE, 2005), pp. 766–772.

Nakajima, M.

Namai, A.

Nemec, H.

H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[CrossRef]

Ohkoshi, S.

Orenstein, J.

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Pan, C. L.

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006).
[CrossRef] [PubMed]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2630–2635 (2004).
[CrossRef]

Pan, R. P.

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006).
[CrossRef] [PubMed]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2630–2635 (2004).
[CrossRef]

Park, H. Y.

C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals,” Phys. Rev. B 61, 15523–11525 (2000).
[CrossRef]

Park, I.

C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals,” Phys. Rev. B 61, 15523–11525 (2000).
[CrossRef]

Plopper, G.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007).
[CrossRef]

Porodinkov, O. E.

G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010).
[CrossRef]

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998), Chap. 9.

Ramesh, R.

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Rauly, D.

H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[CrossRef]

Rezaei, B.

A. SoltaniVala, B. Rezaei, and M. Kalafi, “Tunable defect modes in 2D photonic crystals by means of external magnetic fields,” Phys. B 405, 2996–2998 (2010).
[CrossRef]

Richard, J.

H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[CrossRef]

Saito, M.

Seidel, J.

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Shahabadi, M.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Sigalas, M.

M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997).
[CrossRef]

Sodha, S.

S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics (Plenum, 1981), Chap. 2.

SoltaniVala, A.

A. SoltaniVala, B. Rezaei, and M. Kalafi, “Tunable defect modes in 2D photonic crystals by means of external magnetic fields,” Phys. B 405, 2996–2998 (2010).
[CrossRef]

Soukoulis, C. M.

M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997).
[CrossRef]

Spektor, I. E.

G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010).
[CrossRef]

Srivastava, N. C.

S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics (Plenum, 1981), Chap. 2.

Suemoto, T.

Syvorotka, I. I.

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
[CrossRef]

Syvorotka, I. M.

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
[CrossRef]

Takano, K.

Tang, T. T.

Torgashev, V. I.

G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010).
[CrossRef]

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[CrossRef]

van Slageren, J.

J. van Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72, 020401 (2005).
[CrossRef]

Vieweg, N.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

Volkov, A. A.

G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010).
[CrossRef]

Vongtragool, S.

J. van Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72, 020401 (2005).
[CrossRef]

Wang, Q.

Watanabe, W.

Wen, Q. Y.

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
[CrossRef]

Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009).
[CrossRef]

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, and J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25, 3957–3960 (2008).
[CrossRef]

Wilk, R.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Wright, R. G.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon (IEEE, 2005), pp. 766–772.

Wu, B.

Xavier, P.

H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[CrossRef]

Xu, D. G.

Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009).
[CrossRef]

Yamada, I.

Yang, H. Q.

Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009).
[CrossRef]

Yang, Q. H.

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
[CrossRef]

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, and J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25, 3957–3960 (2008).
[CrossRef]

Yao, J. Q.

Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009).
[CrossRef]

Yu, P.

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Yuan, J. H.

Zgol, M.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon (IEEE, 2005), pp. 766–772.

Zha, J.

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, and J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25, 3957–3960 (2008).
[CrossRef]

Zhang, C. L.

Zhang, H.

Zhang, H. W.

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
[CrossRef]

Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009).
[CrossRef]

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, and J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25, 3957–3960 (2008).
[CrossRef]

Zhang, L. L.

Zhang, X. C.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007).
[CrossRef]

Zhao, Y. G.

Zhao, Y. J.

Zhong, H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. D. Drysdale, I. S. Gregory, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[CrossRef]

Biosens. Bioelectron. (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007).
[CrossRef]

Chin. Phys. Lett. (3)

Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009).
[CrossRef]

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, and J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25, 3957–3960 (2008).
[CrossRef]

Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009).
[CrossRef]

Europhys. Lett. (1)

J. X. Fu, R. J. Liu, and Z. Y. Li, “Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields,” Europhys. Lett. 89, 64003 (2010).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

I. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wireless Compon. Lett. 18, 67–69 (2008).
[CrossRef]

J. Appl. Phys. (1)

H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[CrossRef]

J. Infrared Milli. Terahz. Waves (1)

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. B (1)

A. SoltaniVala, B. Rezaei, and M. Kalafi, “Tunable defect modes in 2D photonic crystals by means of external magnetic fields,” Phys. B 405, 2996–2998 (2010).
[CrossRef]

Phys. Rev. B (3)

J. van Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72, 020401 (2005).
[CrossRef]

M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997).
[CrossRef]

C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals,” Phys. Rev. B 61, 15523–11525 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009).
[CrossRef] [PubMed]

Phys. Sol. State (1)

G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010).
[CrossRef]

Other (3)

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998), Chap. 9.

S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics (Plenum, 1981), Chap. 2.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon (IEEE, 2005), pp. 766–772.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Permeability of the ferrite material at 1 THz under the control of an external magnetic field; the solid and dashed curves represent the real and the imaginary parts of the permeability, respectively. External magnetic field within (a)  35 36.5 T and (b)  35.7 36.2 T .

Fig. 2
Fig. 2

Schematic diagram of 2D magnetic PCs (cross section). (a) PC structure and the Brillouin zone. (b) PCW structure.

Fig. 3
Fig. 3

Band structures of the PC. The location of the normalized frequency of 0.35 (equivalent to 1 THz ) is marked by the dashed lines in the figures. (a) TM band structure. (b) The position and bandwidth of the first bandgap for the TE wave change with n TE . (c) TE band structure for n TE = 2.4 . (d) TE band structure for n TE = 3.2 .

Fig. 4
Fig. 4

Transmittance of the PC structure for the TE wave at the frequency of 1 THz .

Fig. 5
Fig. 5

Transmission spectra for the TE wave. (a) Transmission spectra of the PC structure within 0.85 1.14 THz . (b) Transmission spectra of the PCW structure within 0.7 1.14 THz .

Fig. 6
Fig. 6

Electric field distribution of the PCW for an incident TE wave at 1 THz : (a)  n TE = 2.4 (b)  n TE = 3.0 .

Fig. 7
Fig. 7

Transmittance for the TE wave at 1 THz when n TE changes from 2.4 to 3.2. (a) Transmittance of the PC structure. (b) Transmittance of a bulk structure with the same material and size as the PC.

Fig. 8
Fig. 8

Electric field distribution of the PC for the TE and TM waves at 1 THz . (a) The TE wave for n TE = 2.4 is totally reflected. (b) The TE wave for n TE = 3.0 is completely transmitted. (c) The TM wave is completely transmitted.

Fig. 9
Fig. 9

Electric field distribution for a THz wave with incident angle of 45 ° : (a) TE wave for n TE = 2.4 and (b) TM wave.

Fig. 10
Fig. 10

(a) Phase shift of TE wave for the PC and bulk structure when n TE changes from 2.8 to 3.04. (b) The differences of the phase shift between the TE and TM waves for the PC.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ μ ] = [ μ 0 j κ 0 μ 0 0 j κ 0 μ ] .
μ = μ 0 ( 1 + ω ex ω m ω ex 2 ω 2 ) ,
κ = μ 0 ω ω m ω ex 2 ω 2 ,
μ TE = μ 2 κ 2 μ = ( ω ex + ω m ) 2 ω 2 ω ex ( ω ex ω m ) ω 2 .

Metrics