Abstract

The optical properties of double-layer close-packed metallic gratings have been systematically studied. Apart from the optical transmission enhancement, we report the double-mode oscillation as the metal layer thickness increases beyond a critical value, which is related to the hybrid between two types of surface plasmon polariton and different orders of waveguide resonance inside the air cavity. To further improve our understanding of the physical mechanism involved, a field-interference mechanism of dipole array, induced by both lateral and vertical plasmon coupling, has been employed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
    [CrossRef]
  3. L. Pang, H. M. Chen, L. Wang, J. M. Beechem, and Y. Fainman, “Controlled detection in composite nanoresonant array for surface plasmon resonance sensing,” Opt. Express 17, 14700–14709(2009).
    [CrossRef] [PubMed]
  4. C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength opitcal properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
    [CrossRef] [PubMed]
  5. B. Wang and P. Lalanne, “Surface plasmon polaritons locally excited on the ridges of metallic gratings,” J. Opt. Soc. Am. A 27, 1432–1441 (2010).
    [CrossRef]
  6. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emiter,” Appl. Phys. Lett. 92, 133115 (2008).
    [CrossRef]
  7. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
    [CrossRef]
  8. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Feery, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518 (2006).
    [CrossRef] [PubMed]
  9. K. Y. Fong and P. M. Hui, “Coupling of waveguide and surface modes in enhanced transmission trough stacking gratings,” Appl. Phys. Lett. 89, 091101 (2006).
    [CrossRef]
  10. Y. W. Jiang, Y. T. Wu, M. W. Tsai, P. E. Chang, D. C. Tzhang, Y. H. Ye, and S. C. Lee, “Characteristics of a waveguide mode in a trilayer Ag/SiO2/Au plasmonic thermal emitter,” Opt. Lett. 34, 3089–3091 (2009).
    [CrossRef] [PubMed]
  11. Z. Marcet, J. W. Paster, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Controlling the phase delay of light transmitted through double-layer metallic subwavelength slit arrays,” Opt. Lett. 33, 1410–1412 (2008).
    [CrossRef] [PubMed]
  12. M. F. Chen and H. C. Chang, “The plasmon-forbidden deep sub-wavelength transmission with the TE polarization,” Opt. Express 17, 13953–13958 (2009).
    [CrossRef] [PubMed]
  13. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  14. L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
    [CrossRef]
  15. W. S. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007).
    [CrossRef] [PubMed]
  16. C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
    [CrossRef]
  17. R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
    [CrossRef]

2010 (3)

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength opitcal properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef] [PubMed]

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[CrossRef]

B. Wang and P. Lalanne, “Surface plasmon polaritons locally excited on the ridges of metallic gratings,” J. Opt. Soc. Am. A 27, 1432–1441 (2010).
[CrossRef]

2009 (4)

2008 (4)

Z. Marcet, J. W. Paster, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Controlling the phase delay of light transmitted through double-layer metallic subwavelength slit arrays,” Opt. Lett. 33, 1410–1412 (2008).
[CrossRef] [PubMed]

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emiter,” Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

2007 (1)

2006 (2)

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Beechem, J. M.

Bower, J. E.

Cai, W. S.

Carr, D. W.

Chan, H. B.

Chang, H. C.

Chang, P. E.

Chen, H. M.

Chen, J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

Chen, M. F.

Cheng, C.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

Chettiar, U. K.

Chuang, W. H.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emiter,” Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

Cirelli, R. A.

de Silva, V. C.

Ding, J. P.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

Drachev, V. P.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Fainman, Y.

Fan, Y. X.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

Feery, E.

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Fong, K. Y.

K. Y. Fong and P. M. Hui, “Coupling of waveguide and surface modes in enhanced transmission trough stacking gratings,” Appl. Phys. Lett. 89, 091101 (2006).
[CrossRef]

Garcia-Meca, C.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Huang, C. P.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[CrossRef]

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength opitcal properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef] [PubMed]

Huang, H.

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength opitcal properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef] [PubMed]

Hui, P. M.

K. Y. Fong and P. M. Hui, “Coupling of waveguide and surface modes in enhanced transmission trough stacking gratings,” Appl. Phys. Lett. 89, 091101 (2006).
[CrossRef]

Jiang, Y. W.

Kiang, Y. W.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emiter,” Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

Kildishev, A. V.

Klemens, F.

Lalanne, P.

Lee, S. C.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Mansfield, W. M.

Marcet, Z.

Marti, J.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Martinez, A.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Miner, J.

Miner, J. F.

Ortuno, R.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Pai, C. S.

Pang, L.

Paster, J. W.

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

Ren, F. F.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

Rodriguez-Fortuno, F. J.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Shalaev, V. M.

Shi, D. J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Tanner, D. B.

Taylor, J. A.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tsai, M. W.

Tzhang, D. C.

Wang, B.

Wang, H. T.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

Wang, J. Y.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emiter,” Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

Wang, L.

Wang, Q. J.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[CrossRef]

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength opitcal properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef] [PubMed]

Wang, Y. M.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Woo, K.

Wu, Q. Y.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

Wu, S.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[CrossRef]

Wu, Y. T.

Xu, J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

Yang, C. C.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emiter,” Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

Ye, Y. H.

Yin, X. G.

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength opitcal properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef] [PubMed]

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[CrossRef]

Yuan, H. K.

Zhou, L.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[CrossRef]

Zhu, Y. Y.

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[CrossRef]

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength opitcal properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emiter,” Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

K. Y. Fong and P. M. Hui, “Coupling of waveguide and surface modes in enhanced transmission trough stacking gratings,” Appl. Phys. Lett. 89, 091101 (2006).
[CrossRef]

L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Phys. Rev. B (2)

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406(2008).
[CrossRef]

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength opitcal properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the DMG structure. (b) FIB image of a typical sample. (c), (d) Experimental (filled circles) and numerical (open circles) transmission spectra of (c), d m = 50 nm and (d), d m = 210 nm samples. The lateral period p is 550 nm , and the strip width is l = 300 nm .

Fig. 2
Fig. 2

Dependence of transmission diagram on metal layer thickness d m for (a) DMG ( d i = 60 nm ), (b) DMG ( d i = 250 nm ), and (c) the equivalent SMG of (a) in which the middle SiO 2 layer is replaced by silver. The white area stands for high transmittance. The light-blue and red dashed lines represent the eSPP and iSPP, respectively, for DMG ( d i = 60 nm ) with half-infinite metal superstrates.

Fig. 3
Fig. 3

Dependence of (a) wavelength and (b) intensity of the transmission peak modes in Fig. 2 on d m . The solid circle lines are modes A (red) and B (blue) for DMG ( d i = 60 nm ). The green hollow squares and green solid lines are modes for DMG ( d i = 250 nm ) and the sSMG, respectively. The black solid (dotted) lines are even (odd) modes for the eSMG. The lowest three orders of WR are shown by green dash-dotted lines.

Fig. 4
Fig. 4

E field and H y field distributions for (a), (b) mode A and (c), (d) mode B for DMG ( d i = 60 nm , d m = 700 nm ), respectively.

Fig. 5
Fig. 5

(a) Simulated and (b) experimental transmission spectra of DMG with p = 550 nm , l = 400 nm , d m = 445 nm , and d i = 60 nm . (The experimental data are multiplied by a factor of 2.)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I | p 0 ( ω ) sin k 0 d m 2 cos k 0 ( d m + d i ) 2 | 2 .

Metrics