Abstract

We report on single whispering gallery mode lasing generation and hopping in multiple-ring-coupled microcavities. A side-mode-suppression ratio (SMSR) of 28dB is obtained in a four-ring-coupled cavity laser, and the ratio of the side- and main-mode lasing threshold (Isth/Ith) is as large as 2.5. Both of the values are obviously higher than that of a two-ring-coupled cavity laser. We also find that the single-laser mode hops in steps of the mode spacing when the temperature of the coupled microcavity changes gradually. The mechanisms of side-mode suppression and mode hopping are investigated experimentally and theoretically.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003).
    [CrossRef] [PubMed]
  2. K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1 Wsingle-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett. 5, 369–371 (1993).
    [CrossRef]
  3. M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996).
    [CrossRef]
  4. P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15, 1255–1257 (2003).
    [CrossRef]
  5. L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett. 33, 1150–1152 (2008).
    [CrossRef] [PubMed]
  6. L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
    [CrossRef]
  7. B. Zhou, J. Wang, and H. Zhang, “Improvement of side-mode suppression ratio of a single-mode SCC semiconductor laser,” Electron. Lett. 21, 877–878 (1985).
    [CrossRef]
  8. S. F. Yu and E. H. Li, “Proposed enhancement of side-mode suppression ratio in λ/4 shifted distributed feedback lasers with nonuniform diffused quantum wells,” IEEE Photon. Technol. Lett. 8, 482–484 (1996).
    [CrossRef]
  9. S. N. M. Mestanza, A. A. Von Zuben, and N. C. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
    [CrossRef]
  10. S. Pan and J. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large side mode suppression and improved stability,” IEEE Photon. Technol. Lett. 22, 413–415(2010).
    [CrossRef]
  11. P. W. A. Mcilroy, “Calculation of the mode suppression ratio in Fabry–Perot, DBR, and external cavity lasers,” IEEE J. Quantum Electron. 26, 991–997 (1990).
    [CrossRef]
  12. H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613(2009).
    [CrossRef] [PubMed]
  13. A. E. Siegman, Lasers (University Science, 1986).
  14. H. Cai, B. Liu, X. M. Zhang, A. Q. Liu, J. Tamil, T. Bourouina, and Q. X. Zhang, “A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity,” Opt. Express 16, 16670–16679 (2008).
    [CrossRef] [PubMed]
  15. M. Fridman, M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Phase locking of two coupled lasers with many longitudinal modes,” Opt. Lett. 35, 526–528 (2010).
    [CrossRef] [PubMed]
  16. M. Munroe, S. E. Hodges, J. Cooper, and M. G. Raymer, “Total intensity modulation and mode hopping in a coupled cavity laser as a result of external-cavity length variations,” Opt. Lett. 19, 105–107 (1994).
    [CrossRef] [PubMed]
  17. J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
    [CrossRef]
  18. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser & Photon. Rev. 2, 275–289 (2008).
    [CrossRef]
  19. I. M. I. Habbab and L. J. Cimini, Jr., “A new DBR laser structure for improved side-mode suppression,” IEEE Photon. Technol. Lett. 3, 700–702 (1991).
    [CrossRef]
  20. A. Moujoud, Z. Saddiki, T. Touam, and S. I. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol-gel glasses,” Thin Solid Films 422, 161–165 (2002).
    [CrossRef]

2010

S. Pan and J. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large side mode suppression and improved stability,” IEEE Photon. Technol. Lett. 22, 413–415(2010).
[CrossRef]

M. Fridman, M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Phase locking of two coupled lasers with many longitudinal modes,” Opt. Lett. 35, 526–528 (2010).
[CrossRef] [PubMed]

2009

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613(2009).
[CrossRef] [PubMed]

S. N. M. Mestanza, A. A. Von Zuben, and N. C. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

2008

2007

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

2003

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15, 1255–1257 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003).
[CrossRef] [PubMed]

2002

A. Moujoud, Z. Saddiki, T. Touam, and S. I. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol-gel glasses,” Thin Solid Films 422, 161–165 (2002).
[CrossRef]

1999

L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

1996

S. F. Yu and E. H. Li, “Proposed enhancement of side-mode suppression ratio in λ/4 shifted distributed feedback lasers with nonuniform diffused quantum wells,” IEEE Photon. Technol. Lett. 8, 482–484 (1996).
[CrossRef]

M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996).
[CrossRef]

1994

1993

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1 Wsingle-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett. 5, 369–371 (1993).
[CrossRef]

1991

I. M. I. Habbab and L. J. Cimini, Jr., “A new DBR laser structure for improved side-mode suppression,” IEEE Photon. Technol. Lett. 3, 700–702 (1991).
[CrossRef]

1990

P. W. A. Mcilroy, “Calculation of the mode suppression ratio in Fabry–Perot, DBR, and external cavity lasers,” IEEE J. Quantum Electron. 26, 991–997 (1990).
[CrossRef]

1985

B. Zhou, J. Wang, and H. Zhang, “Improvement of side-mode suppression ratio of a single-mode SCC semiconductor laser,” Electron. Lett. 21, 877–878 (1985).
[CrossRef]

Abeles, J. N.

M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996).
[CrossRef]

Allen, M. G.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Anandarajah, P.

L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

Barry, L. P.

L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

Beere, H. E.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Beltram, F.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Botez, D.

M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996).
[CrossRef]

Bourouina, T.

Cai, H.

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser & Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Cimini, L. J.

I. M. I. Habbab and L. J. Cimini, Jr., “A new DBR laser structure for improved side-mode suppression,” IEEE Photon. Technol. Lett. 3, 700–702 (1991).
[CrossRef]

Connolly, J. C.

M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996).
[CrossRef]

Cooper, J.

Davidson, N.

DiMarco, L.

M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996).
[CrossRef]

Dzurko, K. M.

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1 Wsingle-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett. 5, 369–371 (1993).
[CrossRef]

Fenner, D. B.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Frateschi, N. C.

S. N. M. Mestanza, A. A. Von Zuben, and N. C. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

Fridman, M.

Friesem, A. A.

Green, R. P.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Habbab, I. M. I.

I. M. I. Habbab and L. J. Cimini, Jr., “A new DBR laser structure for improved side-mode suppression,” IEEE Photon. Technol. Lett. 3, 700–702 (1991).
[CrossRef]

Hardy, A.

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1 Wsingle-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett. 5, 369–371 (1993).
[CrossRef]

Hensley, J. M.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Hodges, S. E.

Li, E. H.

S. F. Yu and E. H. Li, “Proposed enhancement of side-mode suppression ratio in λ/4 shifted distributed feedback lasers with nonuniform diffused quantum wells,” IEEE Photon. Technol. Lett. 8, 482–484 (1996).
[CrossRef]

Li, H.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613(2009).
[CrossRef] [PubMed]

Liu, A. Q.

Liu, B.

Liu, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613(2009).
[CrossRef] [PubMed]

L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett. 33, 1150–1152 (2008).
[CrossRef] [PubMed]

Mahler, L.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Mawst, L. J.

M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996).
[CrossRef]

Mcilroy, P. W. A.

P. W. A. Mcilroy, “Calculation of the mode suppression ratio in Fabry–Perot, DBR, and external cavity lasers,” IEEE J. Quantum Electron. 26, 991–997 (1990).
[CrossRef]

Mestanza, S. N. M.

S. N. M. Mestanza, A. A. Von Zuben, and N. C. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

Moujoud, A.

A. Moujoud, Z. Saddiki, T. Touam, and S. I. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol-gel glasses,” Thin Solid Films 422, 161–165 (2002).
[CrossRef]

Munroe, M.

Najafi, S. I.

A. Moujoud, Z. Saddiki, T. Touam, and S. I. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol-gel glasses,” Thin Solid Films 422, 161–165 (2002).
[CrossRef]

Nesnidal, M. P.

M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996).
[CrossRef]

Nixon, M.

Pan, S.

S. Pan and J. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large side mode suppression and improved stability,” IEEE Photon. Technol. Lett. 22, 413–415(2010).
[CrossRef]

Rabiei, P.

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15, 1255–1257 (2003).
[CrossRef]

Raymer, M. G.

Ritchie, D. A.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Ronen, E.

Saddiki, Z.

A. Moujoud, Z. Saddiki, T. Touam, and S. I. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol-gel glasses,” Thin Solid Films 422, 161–165 (2002).
[CrossRef]

Scifres, D. R.

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1 Wsingle-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett. 5, 369–371 (1993).
[CrossRef]

Shang, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613(2009).
[CrossRef] [PubMed]

L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett. 33, 1150–1152 (2008).
[CrossRef] [PubMed]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Steier, W. H.

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15, 1255–1257 (2003).
[CrossRef]

Tamil, J.

Touam, T.

A. Moujoud, Z. Saddiki, T. Touam, and S. I. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol-gel glasses,” Thin Solid Films 422, 161–165 (2002).
[CrossRef]

Tredicucci, A.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Tu, X.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613(2009).
[CrossRef] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003).
[CrossRef] [PubMed]

Von Zuben, A. A.

S. N. M. Mestanza, A. A. Von Zuben, and N. C. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

Wang, J.

B. Zhou, J. Wang, and H. Zhang, “Improvement of side-mode suppression ratio of a single-mode SCC semiconductor laser,” Electron. Lett. 21, 877–878 (1985).
[CrossRef]

Welch, D. F.

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1 Wsingle-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett. 5, 369–371 (1993).
[CrossRef]

Xu, J.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Xu, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613(2009).
[CrossRef] [PubMed]

L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett. 33, 1150–1152 (2008).
[CrossRef] [PubMed]

Yao, J.

S. Pan and J. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large side mode suppression and improved stability,” IEEE Photon. Technol. Lett. 22, 413–415(2010).
[CrossRef]

Yu, S. F.

S. F. Yu and E. H. Li, “Proposed enhancement of side-mode suppression ratio in λ/4 shifted distributed feedback lasers with nonuniform diffused quantum wells,” IEEE Photon. Technol. Lett. 8, 482–484 (1996).
[CrossRef]

Zhang, H.

B. Zhou, J. Wang, and H. Zhang, “Improvement of side-mode suppression ratio of a single-mode SCC semiconductor laser,” Electron. Lett. 21, 877–878 (1985).
[CrossRef]

Zhang, Q. X.

Zhang, X. M.

Zhou, B.

B. Zhou, J. Wang, and H. Zhang, “Improvement of side-mode suppression ratio of a single-mode SCC semiconductor laser,” Electron. Lett. 21, 877–878 (1985).
[CrossRef]

Appl. Phys. Lett.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Electron. Lett.

B. Zhou, J. Wang, and H. Zhang, “Improvement of side-mode suppression ratio of a single-mode SCC semiconductor laser,” Electron. Lett. 21, 877–878 (1985).
[CrossRef]

IEEE J. Quantum Electron.

P. W. A. Mcilroy, “Calculation of the mode suppression ratio in Fabry–Perot, DBR, and external cavity lasers,” IEEE J. Quantum Electron. 26, 991–997 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1 Wsingle-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett. 5, 369–371 (1993).
[CrossRef]

M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996).
[CrossRef]

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15, 1255–1257 (2003).
[CrossRef]

S. F. Yu and E. H. Li, “Proposed enhancement of side-mode suppression ratio in λ/4 shifted distributed feedback lasers with nonuniform diffused quantum wells,” IEEE Photon. Technol. Lett. 8, 482–484 (1996).
[CrossRef]

L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

S. Pan and J. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large side mode suppression and improved stability,” IEEE Photon. Technol. Lett. 22, 413–415(2010).
[CrossRef]

I. M. I. Habbab and L. J. Cimini, Jr., “A new DBR laser structure for improved side-mode suppression,” IEEE Photon. Technol. Lett. 3, 700–702 (1991).
[CrossRef]

J. Am. Chem. Soc.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613(2009).
[CrossRef] [PubMed]

J. Appl. Phys.

S. N. M. Mestanza, A. A. Von Zuben, and N. C. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

Laser & Photon. Rev.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser & Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Nature

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Thin Solid Films

A. Moujoud, Z. Saddiki, T. Touam, and S. I. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol-gel glasses,” Thin Solid Films 422, 161–165 (2002).
[CrossRef]

Other

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram for theoretical treatment of a two-ring-coupled cavity.

Fig. 2
Fig. 2

(a) Fabrication process of coupled microcavity lasers. (b) Microscopic photos (side view) of four- (sample A), three- (sample B), and two-ring (sample C) cavities.

Fig. 3
Fig. 3

Plots of the SMSR versus relative pump energy density ( I pump / I th ).

Fig. 4
Fig. 4

Emission spectra from (a) two-, (b) three-, and (c) four-ring-coupled microcavity lasers. The three spectra in each plot represent the emission when the pump light is around the laser threshold (bottom), just below I s th (middle), and above I s th (top). The insets in the upper graphs are the enlarged spectra that show the emergence of side modes. The highest SMSRs are 18.9, 25.4, and 28.6 dB for the two-, three-, and four-ring cavities.

Fig. 5
Fig. 5

Calculated spectra of (a) single-ring laser and (b) two-, (c) three-, and (d) four-ring-coupled microcavity lasers. When more rings are added, the single-mode performance becomes clearer.

Fig. 6
Fig. 6

(a) The modulation envelope shifts as the temperature changes. (b) Plot of modulation envelope and mode resonant position shifts versus temperature. Dots are experimental data, and the lines are linear fittings.

Fig. 7
Fig. 7

Laser mode hops in steps of the mode spacing as the temperature changes.

Fig. 8
Fig. 8

(a) Simulated modulation spectra as the temperature changes. (b) Plot of modulation envelope and mode resonant position shifts versus temperature.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E ref = r E inc + κ * g 2 E circ ,
E circ = κ E inc + r * g 2 E circ ,
κ = κ 0 exp ( j ψ ) ,
r = 1 κ 0 2 exp ( j φ )
g 2 = exp ( γ L 2 j n k L 2 )
R eff 2 = E ref E inc = r 2 | r | 2 g 2 + g 2 1 r * g 2 .
E = E 1 = 1 1 R eff 2 g 1 .
E = E 2 = 1 1 R eff 1 g 2 ,
R eff 1 = r * 2 | r | 2 g 1 + g 1 1 r g 1
E = E 1 + E 2 = 1 1 R eff 2 g 1 + 1 1 R eff 1 g 2 .
φ = C n k l ,
n = n 0 + α × Δ T ,
l = l 0 ( 1 + β × Δ T ) ,
E = E 1 + E 2 + E 3 = 1 1 R eff 23 g 1 + 1 1 R eff 1 R eff 3 g 2 + 1 1 R eff 21 g 3 ,
R eff 23 = r 2 | r | 2 R eff 3 g 2 + R eff 3 g 2 1 r * R eff 3 g 2 ,
R eff 3 = r 2 | r | 2 g 3 + g 3 1 r * g 3 ,
R eff 21 = r * 2 | r | 2 R eff 1 g 2 + R eff 1 g 2 1 r R eff 1 g 2 .
E = E 1 + E 2 + E 3 + E 4 = 1 1 R eff 234 g 1 + 1 1 R eff 1 R eff 34 g 2 + 1 1 R eff 21 R eff 4 g 3 + 1 1 R eff 321 g 4 ,
R eff 234 = r 2 | r | 2 R eff 34 g 2 + R eff 34 g 2 1 r * R eff 34 g 2 ,
R eff 34 = r 2 | r | 2 R eff 4 g 3 + R eff 4 g 3 1 r * R eff 4 g 3 ,
R eff 4 = r 2 | r | 2 g 4 + g 4 1 r * g 4 ,
R eff 321 = r * 2 | r | 2 R eff 21 g 3 + R eff 21 g 3 1 r R eff 21 g 3 .

Metrics