Abstract

A comparative theoretical analysis of continuously pumped actively Q-switched solid-state lasers differing in output coupling methods (cavity dumping versus a partially transmitting cavity mirror) is presented. Basic performance characteristics of the optimally coupled laser for periodic steady-state operation are expressed analytically. The instability effects are shown to fundamentally inhere in cavity dumping in contrast to ordinary Q-switching. The space of system parameters permitting stable operation and the maximum average power attainable as a train of regular energy pulses are determined numerically and verified experimentally. Cavity dumping is demonstrated to be the coupling method allowing Q-switched lasers to reach extremely high repetition rates.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. McDonagh, R. Wallenstein, and R. Knappe, “47W, 6ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM00Nd:YVO oscillator,” Opt. Lett. 31, 3303–3305(2006).
    [CrossRef] [PubMed]
  2. A. E. Siegman, Lasers (University Science, 1986).
  3. W. Koechner, Solid-State Laser Engineering (Springer, 1996).
  4. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [CrossRef]
  5. J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
    [CrossRef]
  6. A. Hofer, Th. Graf, W. Lüthy, and H. P. Weber, “Fully analytical simulation of Q-switched lasers,” Laser Phys. Lett. 1, 282–284(2004).
    [CrossRef]
  7. R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1913 (1970).
    [CrossRef]
  8. J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003).
    [CrossRef]
  9. D. B. Coyle, D. V. Guarra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
    [CrossRef]
  10. L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard, and W. Grossman, “Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width,” Proc. SPIE 6100, 349–358 (2006).
  11. J. Dörring, A. Killi, U. Morgner, A. Lang, M. Lederer, and D. Kopf, “Period doubling and deterministic chaos in continuously pumped regenerative amplifiers,” Opt. Express 12, 1759–1768(2004).
    [CrossRef] [PubMed]
  12. J. Murray and W. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
    [CrossRef]
  13. M. Grishin, V. Gulbinas, and A. Michailovas, “Bifurcation suppression for stability improvement in Nd:YVO4 regenerative amplifier,” Opt. Express 17, 15700–15708 (2009).
    [CrossRef] [PubMed]
  14. O. Svelto, Principles of Lasers (Plenum, 1998).
  15. K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems (Springer, 1996).
  16. M. Grishin, V. Gulbinas, and A. Michailovas, “Dynamics of high repetition rate regenerative amplifiers,” Opt. Express 15, 9434–9443 (2007).
    [CrossRef] [PubMed]
  17. R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Trends in Optics and Photonics Series (TOPS), Vol.  68, Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds. (2002), pp. 294–298.
  18. A. Ahlborn and U. Parlitz, “Laser stabilization with multiple-delay feedback control,” Opt. Lett. 31, 465–467 (2006).
    [CrossRef] [PubMed]

2009 (1)

2007 (1)

2006 (3)

2004 (2)

2003 (1)

J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003).
[CrossRef]

2002 (1)

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Trends in Optics and Photonics Series (TOPS), Vol.  68, Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds. (2002), pp. 294–298.

1998 (1)

O. Svelto, Principles of Lasers (Plenum, 1998).

1996 (2)

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems (Springer, 1996).

W. Koechner, Solid-State Laser Engineering (Springer, 1996).

1995 (1)

D. B. Coyle, D. V. Guarra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

1991 (1)

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

1989 (1)

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

1986 (1)

A. E. Siegman, Lasers (University Science, 1986).

1980 (1)

J. Murray and W. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

1970 (1)

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1913 (1970).
[CrossRef]

Ahlborn, A.

Alligood, K. T.

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems (Springer, 1996).

Cassanho, A.

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Trends in Optics and Photonics Series (TOPS), Vol.  68, Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds. (2002), pp. 294–298.

Chesler, R. B.

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1913 (1970).
[CrossRef]

Coyle, D. B.

D. B. Coyle, D. V. Guarra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

Ding, A.

J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003).
[CrossRef]

Dörring, J.

Erhard, J.

J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003).
[CrossRef]

Eyres, L. A.

L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard, and W. Grossman, “Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width,” Proc. SPIE 6100, 349–358 (2006).

Geusic, J. E.

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1913 (1970).
[CrossRef]

Graf, Th.

A. Hofer, Th. Graf, W. Lüthy, and H. P. Weber, “Fully analytical simulation of Q-switched lasers,” Laser Phys. Lett. 1, 282–284(2004).
[CrossRef]

Gregg, J.

L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard, and W. Grossman, “Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width,” Proc. SPIE 6100, 349–358 (2006).

Grishin, M.

Grossman, W.

L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard, and W. Grossman, “Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width,” Proc. SPIE 6100, 349–358 (2006).

Guarra, D. V.

D. B. Coyle, D. V. Guarra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Gulbinas, V.

Hofer, A.

A. Hofer, Th. Graf, W. Lüthy, and H. P. Weber, “Fully analytical simulation of Q-switched lasers,” Laser Phys. Lett. 1, 282–284(2004).
[CrossRef]

Jenssen, H. P.

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Trends in Optics and Photonics Series (TOPS), Vol.  68, Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds. (2002), pp. 294–298.

Karr, M. A.

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1913 (1970).
[CrossRef]

Kay, R. B.

D. B. Coyle, D. V. Guarra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Kelley, P. L.

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

Killi, A.

Knappe, R.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1996).

Kopf, D.

Lang, A.

Lederer, M.

Liu, J.

J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003).
[CrossRef]

Lowdermilk, W.

J. Murray and W. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

Lüthy, W.

A. Hofer, Th. Graf, W. Lüthy, and H. P. Weber, “Fully analytical simulation of Q-switched lasers,” Laser Phys. Lett. 1, 282–284(2004).
[CrossRef]

McDonagh, L.

Meng, X.

J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003).
[CrossRef]

Michailovas, A.

Morehead, J. J.

L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard, and W. Grossman, “Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width,” Proc. SPIE 6100, 349–358 (2006).

Morgner, U.

Murray, J.

J. Murray and W. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

Ozugus, B.

J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003).
[CrossRef]

Parlitz, U.

Peterson, R. D.

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Trends in Optics and Photonics Series (TOPS), Vol.  68, Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds. (2002), pp. 294–298.

Richard, D. J.

L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard, and W. Grossman, “Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width,” Proc. SPIE 6100, 349–358 (2006).

Sauer, T. D.

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems (Springer, 1996).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Svelto, O.

O. Svelto, Principles of Lasers (Plenum, 1998).

Wallenstein, R.

Weber, H.

J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003).
[CrossRef]

Weber, H. P.

A. Hofer, Th. Graf, W. Lüthy, and H. P. Weber, “Fully analytical simulation of Q-switched lasers,” Laser Phys. Lett. 1, 282–284(2004).
[CrossRef]

Yorke, J. A.

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems (Springer, 1996).

Zayhowski, J. J.

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

J. Appl. Phys. (1)

J. Murray and W. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

J. Phys. D (1)

D. B. Coyle, D. V. Guarra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Laser Phys. Lett. (1)

A. Hofer, Th. Graf, W. Lüthy, and H. P. Weber, “Fully analytical simulation of Q-switched lasers,” Laser Phys. Lett. 1, 282–284(2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003).
[CrossRef]

Proc. IEEE (1)

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1913 (1970).
[CrossRef]

Proc. SPIE (1)

L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard, and W. Grossman, “Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width,” Proc. SPIE 6100, 349–358 (2006).

Other (5)

A. E. Siegman, Lasers (University Science, 1986).

W. Koechner, Solid-State Laser Engineering (Springer, 1996).

O. Svelto, Principles of Lasers (Plenum, 1998).

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems (Springer, 1996).

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Trends in Optics and Photonics Series (TOPS), Vol.  68, Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds. (2002), pp. 294–298.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Optimum initial gain and (b) optimum final gain versus normalized repetition rate at different parasitic losses.

Fig. 2
Fig. 2

Laser performance for optimum output coupling. (a) Low-PRF dimensionless output pulse energy and (b) dimensionless output power versus normalized repetition rate at different losses.

Fig. 3
Fig. 3

Optimum output coupling versus normalized repetition rate at different parasitic losses.

Fig. 4
Fig. 4

Optimum duration of the high-Q window versus normalized repetition rate for the cavity dumping regime at different losses and fixed initial energy, ϵ i = 3 × 10 15 .

Fig. 5
Fig. 5

Laser performance for optimum coupling. (a) Low-PRF dimensionless peak power and (b) dimensionless peak power times normalized repetition rate square versus normalized repetition rate at different losses.

Fig. 6
Fig. 6

(a) Steady-state optimum duration of the high-Q window versus PRF (solid curve) with respect to instability zone (filled area). (b) Output power versus PRF: the steady-state optimum (solid curve), upper-branch output (dashed curve), and lower-branch output (dotted curve). Both diagrams are presented for δ l = 0.025 and ϵ i = 3 × 10 15 .

Fig. 7
Fig. 7

Optimally coupled laser performance affected by instabilities. Dimensionless output power versus normalized repetition rate for different losses and initial energies. Each curve family contains power curves corresponding to ϵ i = 10 16 , 10 13 , 10 10 , 10 8 from bottom to top; the topmost curve represents the steady-state power reference.

Fig. 8
Fig. 8

Optimally coupled laser performance affected by instabilities. Dimensionless dissipated average power versus PRF (solid curves) with respect to the steady-state reference curve (dashed curves) for different losses at ϵ i = 3 × 10 15 .

Fig. 9
Fig. 9

(a) Theoretical (solid curve) and experimental (squares) maximum stable output power versus repetition rate. (b) Theoretical instability zone (filled area), optimum high-Q window in terms of round trips number [ τ cd opt / ( β G 0 ) ] (solid curve) and experimental operating points (dots).

Tables (2)

Tables Icon

Table 1 Expressions for Laser Parameters

Tables Icon

Table 2 Laser Parameters

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

d ϵ ( t ˜ ) d t ˜ = ϵ ( t ˜ ) [ g ( t ˜ ) g t ] ,
d g ( t ˜ ) d t ˜ = ϵ ( t ˜ ) g ( t ˜ ) ,
ϵ ( g ) = ϵ i + g i g ( δ oc + δ l ) ln ( g i g ) .
ϵ out = g i g f δ l ln ( g i g f ) .
g i g f = ( δ oc + δ l ) ln ( g i g f ) .
g i = g ˜ + g f ( 1 g ˜ ) ,
ϵ out = g ˜ ( 1 g f ) δ l ln ( 1 + g ˜ g f g ˜ ) .
g f opt = g ˜ 2 + 4 δ l ( 1 g ˜ ) g ˜ 2 ( 1 g ˜ ) .
g i opt = g ˜ 2 + 4 δ l ( 1 g ˜ ) + g ˜ 2 .
g i opt g ˜ + δ l ( 1 g ˜ ) , g ˜ 1 ;
g f opt δ l g ˜ , g ˜ 1.
g i opt δ l + g ˜ 2 ( 1 δ l ) , g ˜ 0 ;
g f opt δ l g ˜ 2 ( 1 δ l ) , g ˜ 0 .
ϵ out max = g ˜ [ 2 g ˜ 2 + 4 δ l ( 1 g ˜ ) + g ˜ ] 2 ( 1 g ˜ ) δ l ln [ ( 1 g ˜ ) ( 1 + 2 g ˜ g ˜ 2 + 4 δ l ( 1 g ˜ ) g ˜ ) ] .
ϵ out max g ˜ δ 1 [ 1 + ln ( g ˜ 2 δ 1 ) ] , g ˜ 1 .
ϵ out max ( T T 1 ) 1 ( 1 δ l ) 2 , g ˜ 0 .
ϵ l opt = δ l ln [ ( 1 g ˜ ) ( 1 + 2 g ˜ g ˜ 2 + 4 δ l ( 1 g ˜ ) g ˜ ) ] .
δ oc = g ˜ ( 1 g f ) ln ( 1 g ˜ + g ˜ / g f ) δ l .
δ oc opt = g ˜ [ 2 g ˜ 2 + 4 δ l ( 1 g ˜ ) + g ˜ ] 2 ( 1 g ˜ ) ln [ ( 1 g ˜ ) ( 1 + 2 g ˜ g ˜ 2 + 4 δ l ( 1 g ˜ ) g ˜ ) ] δ l .
δ oc opt g ˜ δ l ln ( g ˜ 2 / δ l ) δ l , g ˜ 1 ;
δ oc opt δ l ( 1 δ l ) , g ˜ 0 .
t ˜ = d g g [ ϵ i + g i g ( δ oc + δ l ) ln ( g i / g ) ] .
τ oc ln ( g ˜ / ϵ i ) g i δ oc δ l + ln ( g ˜ / ϵ f ) δ oc + δ l g f ,
τ cd ln ( g ˜ / ϵ i ) g i δ l ,
τ oc opt 2 ( T T 1 ) 1 ln ( g ˜ / ϵ i ) + ln ( g ˜ / ϵ f ) 1 δ l , g ˜ 0 .
τ cd opt 2 ln ( g ˜ / ϵ i ) g ˜ 2 + 4 δ l ( 1 g ˜ ) + g ˜ 2 δ l .
τ cd opt ln ( 1 / ϵ i ) g ˜ ( 1 δ l ) , g ˜ 1 ;
τ cd opt ln ( g ˜ / ϵ i ) δ l ( 1 δ l ) , g ˜ 0 .
ϵ peak = g i ( δ oc + δ l ) [ 1 + ln ( g i δ oc + δ l ) ] .
ϵ peak opt = g i opt ( δ oc opt + δ l ) [ 1 + ln ( g i opt δ oc opt + δ l ) ] .
ϵ peak opt = g ˜ g ˜ δ l ln ( g ˜ / δ l ) { 1 ln [ g ˜ δ l g ˜ ln ( g ˜ / δ l ) ] } , g ˜ 1 ;
ϵ peak opt δ oc opt ( T T 1 ) 2 ( 1 δ l ) 3 8 , g ˜ 0 .
τ cd = g i g f d g g [ ϵ i + g i g δ l ln ( g i / g ) ] .
F ^ Σ ( g 1 ) = ( 1 g ˜ ) 1 g t / g 1 1 g t / F ^ oc ( g 1 ) .

Metrics