Abstract

We investigate the quantum discord dynamics of two noninteracting two-level atoms, each trapped in a single-mode optical cavity which is filled with a nonlinear Kerr-like medium. It is found that quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution. Furthermore, we explore the influence of the nonlinear Kerr-like medium on the dynamics of quantum discord, quantum mutual information, and classical correlation of two atoms. It is shown that the amount of quantum discord, quantum mutual information, and classical correlation of two atoms can be improved by adjusting the value of the Kerr medium. Finally, we also study the effect of phase dissipation on this system by making use of the Monte Carlo wavefunction method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [CrossRef]
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef] [PubMed]
  4. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872(1998).
    [CrossRef]
  5. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
    [CrossRef]
  6. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
    [CrossRef]
  7. D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
    [CrossRef]
  8. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007).
    [CrossRef] [PubMed]
  9. J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
    [CrossRef] [PubMed]
  10. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
    [CrossRef]
  11. Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
    [CrossRef]
  12. E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
    [CrossRef]
  13. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
    [CrossRef] [PubMed]
  14. C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
    [CrossRef]
  15. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
    [CrossRef]
  16. V. Vedral, “The elusive source of quantum speedup,” Found. Phys. 40, 1141–1154 (2010).
    [CrossRef]
  17. J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A: Math. Theor. 43, 045305 (2010).
    [CrossRef]
  18. Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008).
    [CrossRef]
  19. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
    [CrossRef]
  20. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
    [CrossRef] [PubMed]
  21. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
    [CrossRef] [PubMed]
  22. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
    [CrossRef] [PubMed]
  23. H. Ollivier and W. H. Zurek, “Quantum Discord: A Measure of the Quantumness of Correlations,” Phys. Rev. Lett. 88, 017901(2001).
    [CrossRef]
  24. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
    [CrossRef] [PubMed]
  25. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
    [CrossRef]
  26. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101(2010).
    [CrossRef]
  27. J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Quantum discord induced by white noises,” J. Opt. Soc. Am. B 27, 1799–1803(2010).
    [CrossRef]
  28. J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
    [CrossRef]
  29. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
    [CrossRef] [PubMed]
  30. J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
    [CrossRef]
  31. A. Joshi and R. R. Puri, “Dynamical evolution of the two-photon Jaynes-Cummings model in a Kerr-like medium,” Phys. Rev. A 45, 5056–5060 (1992).
    [CrossRef] [PubMed]
  32. B. Bellomo, R. Lo Franco, and G. Compagno, “Entanglement dynamics of two independent qubits in environments with and without memory,” Phys. Rev. A 77, 032342 (2008).
    [CrossRef]
  33. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
    [CrossRef]
  34. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  35. T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence of bipartite mixed “X” states,” Quantum Inf. Comput. 7, 459–468 (2007).
  36. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).
  37. J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992).
    [CrossRef] [PubMed]
  38. J. Jing and T. Yu, “Non-Markovian relaxation of a three-level system: quantum trajectory approach,” Phys. Rev. Lett. 105, 240403 (2010).
    [CrossRef]

2010 (8)

V. Vedral, “The elusive source of quantum speedup,” Found. Phys. 40, 1141–1154 (2010).
[CrossRef]

J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A: Math. Theor. 43, 045305 (2010).
[CrossRef]

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101(2010).
[CrossRef]

J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Quantum discord induced by white noises,” J. Opt. Soc. Am. B 27, 1799–1803(2010).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

J. Jing and T. Yu, “Non-Markovian relaxation of a three-level system: quantum trajectory approach,” Phys. Rev. Lett. 105, 240403 (2010).
[CrossRef]

2009 (2)

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

2008 (4)

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

B. Bellomo, R. Lo Franco, and G. Compagno, “Entanglement dynamics of two independent qubits in environments with and without memory,” Phys. Rev. A 77, 032342 (2008).
[CrossRef]

Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008).
[CrossRef]

2007 (3)

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007).
[CrossRef] [PubMed]

T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence of bipartite mixed “X” states,” Quantum Inf. Comput. 7, 459–468 (2007).

2005 (1)

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

2004 (1)

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef] [PubMed]

2003 (1)

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
[CrossRef]

2001 (2)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

H. Ollivier and W. H. Zurek, “Quantum Discord: A Measure of the Quantumness of Correlations,” Phys. Rev. Lett. 88, 017901(2001).
[CrossRef]

2000 (2)

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef] [PubMed]

1999 (3)

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

1998 (3)

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872(1998).
[CrossRef]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

1997 (1)

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

1992 (2)

A. Joshi and R. R. Puri, “Dynamical evolution of the two-photon Jaynes-Cummings model in a Kerr-like medium,” Phys. Rev. A 45, 5056–5060 (1992).
[CrossRef] [PubMed]

J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992).
[CrossRef] [PubMed]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Alber, G.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Ali, M.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Almeida, M. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

Barbieri, M.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

Bellomo, B.

B. Bellomo, R. Lo Franco, and G. Compagno, “Entanglement dynamics of two independent qubits in environments with and without memory,” Phys. Rev. A 77, 032342 (2008).
[CrossRef]

Bennett, C. H.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Boas, C. J. Villas

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Boozer, A. D.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
[CrossRef] [PubMed]

Bourdel, T.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007).
[CrossRef] [PubMed]

Bouwmeester, D.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Braun, D.

D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
[CrossRef]

Braunstein, S. L.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872(1998).
[CrossRef]

Brennecke, F.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007).
[CrossRef] [PubMed]

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Buck, J. R.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
[CrossRef] [PubMed]

Castin, Y.

J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992).
[CrossRef] [PubMed]

Caves, C. M.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Céleri, L. C.

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Chen, Z. Q.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101(2010).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).

Compagno, G.

B. Bellomo, R. Lo Franco, and G. Compagno, “Entanglement dynamics of two independent qubits in environments with and without memory,” Phys. Rev. A 77, 032342 (2008).
[CrossRef]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Cui, J.

J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A: Math. Theor. 43, 045305 (2010).
[CrossRef]

Dalibard, J.

J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992).
[CrossRef] [PubMed]

Datta, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

Deng, Z. J.

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

DiVincenzo, D. P.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

Donner, T.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007).
[CrossRef] [PubMed]

Eberly, J. H.

T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence of bipartite mixed “X” states,” Quantum Inf. Comput. 7, 459–468 (2007).

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef] [PubMed]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Esslinger, T.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007).
[CrossRef] [PubMed]

Fan, H.

J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A: Math. Theor. 43, 045305 (2010).
[CrossRef]

Fanchini, F. F.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Feng, M.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101(2010).
[CrossRef]

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

Fuchs, C. A.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

Gao, K. L.

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

Guo, G. C.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Hagley, E.

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Horodecki, M.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Horodecki, P.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Horodecki, R.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Jin, J. S.

Jing, J.

J. Jing and T. Yu, “Non-Markovian relaxation of a three-level system: quantum trajectory approach,” Phys. Rev. Lett. 105, 240403 (2010).
[CrossRef]

Joshi, A.

A. Joshi and R. R. Puri, “Dynamical evolution of the two-photon Jaynes-Cummings model in a Kerr-like medium,” Phys. Rev. A 45, 5056–5060 (1992).
[CrossRef] [PubMed]

Jozsa, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Kimble, H. J.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
[CrossRef] [PubMed]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872(1998).
[CrossRef]

Kohl, M.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007).
[CrossRef] [PubMed]

Kuzmich, A.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
[CrossRef] [PubMed]

Lanyon, B. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

Li, C. F.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Linden, N.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Lo Franco, R.

B. Bellomo, R. Lo Franco, and G. Compagno, “Entanglement dynamics of two independent qubits in environments with and without memory,” Phys. Rev. A 77, 032342 (2008).
[CrossRef]

Maitre, X.

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Maniscalco, S.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

Maziero, J.

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Mazzola, L.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

McKeever, J.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
[CrossRef] [PubMed]

Meyer, D. A.

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef] [PubMed]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

Mølmer, K.

J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992).
[CrossRef] [PubMed]

Mor, T.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

Nagerl, H. C.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
[CrossRef] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Ollivier, H.

H. Ollivier and W. H. Zurek, “Quantum Discord: A Measure of the Quantumness of Correlations,” Phys. Rev. Lett. 88, 017901(2001).
[CrossRef]

Oppenheim, J.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Pan, J. W.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

Pei, P.

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Piilo, J.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Popescu, S.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Puri, R. R.

A. Joshi and R. R. Puri, “Dynamical evolution of the two-photon Jaynes-Cummings model in a Kerr-like medium,” Phys. Rev. A 45, 5056–5060 (1992).
[CrossRef] [PubMed]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Rains, E.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

Rau, A. R. P.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Ritter, S.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007).
[CrossRef] [PubMed]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Schack, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Sen, A.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Sen, U.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Serra, R. M.

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Shaji, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

Shor, P. W.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

Smolin, J. A.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

Song, H. S.

Souza, S.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Stamper-Kurn, D. M.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
[CrossRef] [PubMed]

Synak-Radtke, B.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Vedral, V.

V. Vedral, “The elusive source of quantum speedup,” Found. Phys. 40, 1141–1154 (2010).
[CrossRef]

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

Wang, B.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101(2010).
[CrossRef]

Weinfurter, H.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

Werlang, T.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

White, A. G.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Wotters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Wunderlich, C.

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Xu, J. S.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Xu, X. Y.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Xu, Z. Y.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101(2010).
[CrossRef]

Yeo, Y.

Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008).
[CrossRef]

Yu, C. S.

Yu, T.

J. Jing and T. Yu, “Non-Markovian relaxation of a three-level system: quantum trajectory approach,” Phys. Rev. Lett. 105, 240403 (2010).
[CrossRef]

T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence of bipartite mixed “X” states,” Quantum Inf. Comput. 7, 459–468 (2007).

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef] [PubMed]

Zeilinger, A.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

Zhang, C. J.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Zou, X. B.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Zurek, W. H.

H. Ollivier and W. H. Zurek, “Quantum Discord: A Measure of the Quantumness of Correlations,” Phys. Rev. Lett. 88, 017901(2001).
[CrossRef]

Found. Phys. (1)

V. Vedral, “The elusive source of quantum speedup,” Found. Phys. 40, 1141–1154 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. A: Math. Theor. (1)

J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A: Math. Theor. 43, 045305 (2010).
[CrossRef]

Nat. Commun. (1)

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Nature (1)

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007).
[CrossRef] [PubMed]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Phys. Rev. A (10)

Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008).
[CrossRef]

A. Joshi and R. R. Puri, “Dynamical evolution of the two-photon Jaynes-Cummings model in a Kerr-like medium,” Phys. Rev. A 45, 5056–5060 (1992).
[CrossRef] [PubMed]

B. Bellomo, R. Lo Franco, and G. Compagno, “Entanglement dynamics of two independent qubits in environments with and without memory,” Phys. Rev. A 77, 032342 (2008).
[CrossRef]

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101(2010).
[CrossRef]

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999).
[CrossRef]

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Phys. Rev. Lett. (17)

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef] [PubMed]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992).
[CrossRef] [PubMed]

J. Jing and T. Yu, “Non-Markovian relaxation of a three-level system: quantum trajectory approach,” Phys. Rev. Lett. 105, 240403 (2010).
[CrossRef]

D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
[CrossRef]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef] [PubMed]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef] [PubMed]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef] [PubMed]

H. Ollivier and W. H. Zurek, “Quantum Discord: A Measure of the Quantumness of Correlations,” Phys. Rev. Lett. 88, 017901(2001).
[CrossRef]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef] [PubMed]

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872(1998).
[CrossRef]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

Quantum Inf. Comput. (1)

T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence of bipartite mixed “X” states,” Quantum Inf. Comput. 7, 459–468 (2007).

Rev. Mod. Phys. (1)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

Science (1)

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef] [PubMed]

Other (2)

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the system investigated in the present paper. There is no interaction between the two atoms and no communication between the two cavities.

Fig. 2
Fig. 2

(a) Concurrence E a 1 a 2 Φ and (b) quantum discord Q a 1 a 2 Φ of two atoms are plotted as the function of time t and parameter μ with r = 0.7 , χ = 0 , and g = 1 .

Fig. 3
Fig. 3

Time evolution of (a) concurrence E a 1 a 2 Φ and (b) quantum discord Q a 1 a 2 Φ of two atoms are displayed for three different values of the Kerr coefficient χ: χ = 0 (dotted line), χ = 1 (dashed line), and χ = 3 (solid line) with r = 0.7 , | μ | 2 = 1 / 9 , | ν | 2 = 8 / 9 , and g = 1 .

Fig. 4
Fig. 4

Dynamics of (a) quantum mutual information and I a 1 a 2 Φ (b) classical correlation C a 1 a 2 Φ of two atoms as a function of time t with r = 0.7 , | μ | 2 = 1 / 9 , | ν | 2 = 8 / 9 , and g = 1 for χ = 0 (dotted line) and χ = 3 (solid line) when the atoms are initially in the ρ Φ ( 0 ) .

Fig. 5
Fig. 5

(a) Concurrence E a 1 a 2 Ψ and (b) quantum discord Q a 1 a 2 Ψ of two atoms are plotted as the function of time t and parameter μ with r = 2 / 3 , χ = 0 , and g = 1 .

Fig. 6
Fig. 6

Time evolution of (a) concurrence E a 1 a 2 Ψ and (b) quantum discord Q a 1 a 2 Ψ of two atoms are displayed for three different values of the Kerr coefficient χ: χ = 0 (dotted line), χ = 1 (dashed line), and χ = 3 (solid line) with r = 2 / 3 , | μ | 2 = 1 / 2 , | ν | 2 = 1 / 2 , and g = 1 .

Fig. 7
Fig. 7

Dynamics of (a) quantum mutual information and I a 1 a 2 Φ (b) classical correlation C a 1 a 2 Φ of two atoms as a function of time t with r = 2 / 3 , | μ | 2 = 1 / 2 , | ν | 2 = 1 / 2 , and g = 1 for χ = 0 (dotted line) and χ = 3 (solid line) when the atoms are initially in the ρ Φ ( 0 ) .

Fig. 8
Fig. 8

Time evolution of (a) concurrence E a 1 a 2 Φ and (b) quantum discord Q a 1 a 2 Φ of two atoms are displayed for two different values of the Kerr coefficient χ: χ = 0 (dotted line) and χ = 1.5 (solid line) with r = 0.9 , | μ | 2 = 1 / 2 , | ν | 2 = 1 / 2 , g = 1 , and γ = 0.2 when the atoms are initially in the ρ Φ ( 0 ) .

Fig. 9
Fig. 9

Time evolution of (a) concurrence E a 1 a 2 Φ and (b) quantum discord Q a 1 a 2 Φ of two atoms are displayed for two different values of the FKerr coefficient χ: χ = 0 (dotted line) and χ = 1.5 (solid line) with r = 0.9 , | μ | 2 = 1 / 2 , | ν | 2 = 1 / 2 , g = 1 , and γ = 0.2 when the atoms are initially in the ρ Φ ( 0 ) .

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

H = i = 1 2 [ ω c a i a i + ω a S i z + χ a i 2 a i 2 + g ( a i 2 S i + a i 2 S i + ) ] ,
ω c = ω 0 p 2 / ( ω 0 ω ) , χ = q p 4 / ( ω 0 ω ) 2 ,
ρ Φ ( 0 ) = r | Φ Φ | + 1 r 4 I , ρ Ψ ( 0 ) = r | Ψ Ψ | + 1 r 4 I , | Φ = μ | g e + ν | e g , | Ψ = μ | g g + ν | e e ,
ρ Φ ( 0 ) = ( r | Φ Φ | + 1 r 4 I ) | 0 c 1 c 1 0 | | 0 c 2 c 2 0 | .
ρ Φ ( t ) = 1 r 4 [ A 0 2 ( t ) | e | e | 0 | 0 + A 0 ( t ) B 0 ( t ) | e | g | 0 | 2 + B 0 ( t ) A 0 ( t ) | g | e | 2 | 0 + B 0 2 ( t ) | g | g | 2 | 2 ] [ A 0 * 2 ( t ) e | e | 0 | 0 | + A 0 * ( t ) B 0 * ( t ) e | g | 0 | 2 | + B 0 * ( t ) A 0 * ( t ) g | e | 2 | 0 | + B 0 * 2 ( t ) g | g | 2 | 2 | ] + [ r | ν | 2 + 1 r 4 ] [ A 0 ( t ) | e | g | 0 | 0 + B 0 ( t ) | g | g | 2 | 0 ] [ A 0 * ( t ) e | g | 0 | 0 | + B 0 * ( t ) g | g | 2 | 0 | ] + r ν μ * [ A 0 ( t ) | e | g | 0 | 0 + B 0 ( t ) | g | g | 0 | 2 ] [ A 0 * ( t ) g | e | 0 | 0 | + B 0 * ( t ) g | g | 0 | 2 | ] + r μ ν * [ A 0 ( t ) | g | e | 0 | 0 + B 0 ( t ) | g | g | 0 | 2 ] [ A 0 * ( t ) e | g | 0 | 0 | + B 0 * ( t ) g | g | 2 | 0 | ] + [ r | μ | 2 + 1 r 4 ] [ A 0 ( t ) | g | e | 0 | 0 + B 0 ( t ) | g | g | 0 | 2 ] [ A 0 * ( t ) g | e | 0 | 0 | + B 0 * ( t ) g | g | 0 | 2 | ] + 1 r 4 | g | g | 0 | 0 g | g | 0 | 0 | ,
A 0 ( t ) = exp ( i χ t ) { cos ( 2 g 2 + χ 2 t ) + i χ 2 g 2 + χ 2 sin ( 2 g 2 + χ 2 t ) } , B 0 ( t ) = exp ( i χ t ) { ( 2 i g 2 / 2 g 2 + χ 2 ) sin ( 2 g 2 + χ 2 t ) } .
ρ Ψ ( 0 ) = ( r | Ψ Ψ | + 1 r 4 I ) | 0 c 1 c 1 0 | | 0 c 2 c 2 0 | .
ρ Ψ ( t ) = [ r | ν | 2 + 1 r 4 ] [ A 0 2 ( t ) | e | e | 0 | 0 + A 0 ( t ) B 0 ( t ) | e | g | 0 | 2 + B 0 ( t ) A 0 ( t ) | g | e | 2 | 0 + B 0 2 ( t ) | g | g | 2 | 2 ] [ A 0 * 2 ( t ) e | e | 0 | 0 | + A 0 * ( t ) B 0 * ( t ) e | g | 0 | 2 | + B 0 * ( t ) A 0 * ( t ) g | e | 2 | 0 | + B 0 * 2 ( t ) g | g | 2 | 2 | ] + 1 r 4 [ A 0 ( t ) | e | g | 0 | 0 + B 0 ( t ) | g | g | 2 | 0 ] [ A 0 * ( t ) e | g | 0 | 0 | + B 0 * ( t ) g | g | 2 | 0 | ] + 1 r 4 [ A 0 ( t ) | g | e | 0 | 0 + B 0 ( t ) | g | g | 0 | 2 ] [ A 0 * ( t ) g | e | 0 | 0 | + B 0 * ( t ) g | g | 0 | 2 | ] + [ r | μ | 2 + 1 r 4 ] | g | g | 0 | 0 g | g | 0 | 0 | + r ν μ * [ A 0 2 ( t ) | e | e | 0 | 0 + A 0 ( t ) B 0 ( t ) | e | g | 0 | 2 + B 0 ( t ) A 0 ( t ) | g | e | 2 | 0 + B 0 2 ( t ) | g | g | 2 | 2 ] g | g | 0 | 0 | + r μ ν * | g | g | 0 | 0 [ A 0 * 2 ( t ) e | e | 0 | 0 | + A 0 * ( t ) B 0 * ( t ) e | g | 0 | 2 | + B 0 * ( t ) A 0 * ( t ) g | e | 2 | 0 | + B 0 * 2 ( t ) g | g | 2 | 2 | ] .
Q ( ρ X Y ) = I ( ρ X Y ) C ( ρ X Y ) ,
C ( ρ X Y ) = max { B k } { S ( ρ X ) S ( ρ X Y | { B k } ) ,
ρ a 1 a 2 Φ ( t ) = ( A a 1 a 2 Φ ( t ) 0 0 0 0 B a 1 a 2 Φ ( t ) F a 1 a 2 Φ ( t ) 0 0 F a 1 a 2 * Φ ( t ) C a 1 a 2 Φ ( t ) 0 0 0 0 D a 1 a 2 Φ ( t ) ) ,
A a 1 a 2 Φ ( t ) = 1 r 4 | A 0 2 ( t ) | 2 , B a 1 a 2 Φ ( t ) = 1 r 4 | A 0 ( t ) B 0 ( t ) | 2 + [ r | ν | 2 + 1 r 4 ] | A 0 ( t ) | 2 , C a 1 a 2 Φ ( t ) = 1 r 4 | B 0 ( t ) A 0 ( t ) | 2 + [ 1 r 4 + r | μ | 2 ] | A 0 ( t ) | 2 , D a 1 a 2 Φ ( t ) = 1 r 4 | B 0 2 ( t ) | 2 + [ r | ν | 2 + 1 r 2 + r | μ | 2 ] | B 0 ( t ) | 2 + 1 r 4 , F a 1 a 2 Φ ( t ) = r ν μ * | A 0 ( t ) | 2 .
λ 1 , 2 = 1 2 { [ B a 1 a 2 Φ ( t ) + C a 1 a 2 Φ ( t ) ] ± [ ( B a 1 a 2 Φ ( t ) C a 1 a 2 Φ ( t ) ) 2 + 4 | F a 1 a 2 Φ ( t ) | 2 ] 1 / 2 } , λ 3 , 4 = 1 2 [ ( A a 1 a 2 Φ ( t ) + D a 1 a 2 Φ ( t ) ) ± | A a 1 a 2 Φ ( t ) D a 1 a 2 Φ ( t ) | ] .
I ( ρ a 1 a 2 Φ ( t ) ) = S ( ρ a 1 Φ ( t ) ) + S ( ρ a 2 Φ ( t ) ) + j = 1 4 λ j log 2 λ j ,
S ( ρ a 1 Φ ( t ) ) = [ ( A a 1 a 2 Φ ( t ) + B a 1 a 2 Φ ( t ) ) log 2 ( A a 1 a 2 Φ ( t ) + B a 1 a 2 Φ ( t ) ) + ( C a 1 a 2 Φ ( t ) + D a 1 a 2 Φ ( t ) ) log 2 ( C a 1 a 2 Φ ( t ) + D a 1 a 2 Φ ( t ) ) ] , S ( ρ a 2 Φ ( t ) ) = [ ( A a 1 a 2 Φ ( t ) + C a 1 a 2 Φ ( t ) ) log 2 ( A a 1 a 2 Φ ( t ) + C a 1 a 2 Φ ( t ) ) + ( B a 1 a 2 Φ ( t ) + D a 1 a 2 Φ ( t ) ) log 2 ( B a 1 a 2 Φ ( t ) + D a 1 a 2 Φ ( t ) ) ] ,
E ( ρ ) = max { 0 , λ 1 λ 2 λ 3 λ 4 } ,
E a 1 a 2 Φ ( t ) = 2 max { 0 , | F a 1 a 2 Φ ( t ) | A a 1 a 2 Φ ( t ) D a 1 a 2 Φ ( t ) } ,
ρ a 1 a 2 Ψ ( t ) = ( A a 1 a 2 Ψ ( t ) 0 0 F a 1 a 2 Ψ ( t ) 0 B a 1 a 2 Ψ ( t ) 0 0 0 0 C a 1 a 2 Ψ ( t ) 0 F a 1 a 2 * Ψ ( t ) 0 0 D a 1 a 2 Ψ ( t ) ) ,
A a 1 a 2 Ψ ( t ) = [ 1 r 4 + r | ν | 2 ] | A 0 2 ( t ) | 2 , B a 1 a 2 Ψ ( t ) = [ 1 r 4 + r | ν | 2 ] | A 0 ( t ) B 0 ( t ) | 2 + 1 r 4 | A 0 ( t ) | 2 , C a 1 a 2 Ψ ( t ) = [ 1 r 4 + r | ν | 2 ] | B 0 ( t ) A 0 ( t ) | 2 + 1 r 4 | A 0 ( t ) | 2 , D a 1 a 2 Ψ ( t ) = [ 1 r 4 + r | ν | 2 ] | B 0 2 ( t ) | 2 + 1 r 2 | B 0 ( t ) | 2 + [ 1 r 4 + r | μ | 2 ] , F a 1 a 2 Ψ ( t ) = r ν μ * A 0 2 ( t ) .
E a 1 a 2 Ψ ( t ) = 2 max { 0 , | F a 1 a 2 Ψ ( t ) | B a 1 a 2 Ψ ( t ) C a 1 a 2 Ψ ( t ) } .
d ρ ( t ) d t = i [ H , ρ ( t ) ] + D ρ ( t ) = i [ H , ρ ( t ) ] + j = 1 2 γ j 2 ( 2 a j a j ρ ( t ) a j a j ( a j a j ) 2 ρ ( t ) ρ ( t ) ( a j a j ) 2 ) ,

Metrics