Abstract

We analyze and design a hybrid dielectric-loaded plasmonic waveguide (HDLW) featuring a long propagation length and strong field confinement, for efficient control and confinement of light in the subwavelength area of λ2/160. The HDLW is then used to build compact wavelength selective components of high optical performance, including ring resonators (RR) and add-drop filters (ADF). In particular, we demonstrate RRs having a small ring radius of 2μm, a low transmission loss of 0.8dB, a high extinction ratio of 21dB, and a free spectral range of 66nm. Moreover, an ADF with a ring radius of 2μm features a 12dB extinction ratio, a transmission loss of 0.9dB, and a channel isolation level of 10dB at the resonant wavelength. The compact footprint and superior performance of these plasmonic components make them promising building blocks for future nanoscale electronic-photonic integrated circuits for data communication and sensing applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  3. J. C. Weeber, A. Dereux, C. Girad, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
    [CrossRef]
  4. H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216–4223 (2007).
    [CrossRef] [PubMed]
  5. A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22, 2027–2038 (2005).
    [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength waveguide metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  7. N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
    [CrossRef]
  8. C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55–B60 (2009).
    [CrossRef]
  9. H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, (2009).
    [CrossRef]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
    [CrossRef]
  11. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103–221105 (2010).
    [CrossRef]
  12. J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
    [CrossRef]
  13. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979(2010).
    [CrossRef] [PubMed]
  14. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
    [CrossRef]
  15. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).
    [CrossRef] [PubMed]
  16. B. Yun, G. Hu, Y. Ji, and Y. Cui, “Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity,” J. Opt. Soc. Am. B 26, 1924–1929 (2009).
    [CrossRef]
  17. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [CrossRef] [PubMed]
  18. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113(2011).
    [CrossRef]
  19. A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
    [CrossRef] [PubMed]
  20. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009).
    [CrossRef] [PubMed]
  21. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211(2004).
    [CrossRef] [PubMed]
  22. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864(2002).
    [PubMed]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  24. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405–075415 (2005).
    [CrossRef]
  25. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  26. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
    [CrossRef] [PubMed]
  27. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons,” Nano Lett. 7, 880–884(2007).
    [CrossRef] [PubMed]
  28. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [CrossRef]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method3rd Ed. (Artech House, Boston, 2005).

2011 (2)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113(2011).
[CrossRef]

2010 (5)

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103–221105 (2010).
[CrossRef]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).
[CrossRef] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979(2010).
[CrossRef] [PubMed]

2009 (6)

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

2007 (3)

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216–4223 (2007).
[CrossRef] [PubMed]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

2005 (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength waveguide metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405–075415 (2005).
[CrossRef]

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22, 2027–2038 (2005).
[CrossRef]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

1999 (1)

J. C. Weeber, A. Dereux, C. Girad, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aitchison, J. S.

Akerman, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Alam, M. Z.

Almeida, V. R.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405–075415 (2005).
[CrossRef]

Bai, P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103–221105 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Barrios, C. A.

Bartal, G.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113(2011).
[CrossRef]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Blasco, J.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Boltasseva, A.

Bozhevolnyi, S. I.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22, 2027–2038 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength waveguide metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Brongersma, M. L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Brown, T. G.

Chen, Z.

Cheng, W.

Chichkov, B. N.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chu, H. S.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103–221105 (2010).
[CrossRef]

H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, (2009).
[CrossRef]

H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216–4223 (2007).
[CrossRef] [PubMed]

Cui, Y.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Dal Negro, L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Daldosso, N.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Dereux, A.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

J. C. Weeber, A. Dereux, C. Girad, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength waveguide metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405–075415 (2005).
[CrossRef]

Ebbesen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength waveguide metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Evlyukhin, A. B.

Ewe, W. B.

H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, (2009).
[CrossRef]

H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216–4223 (2007).
[CrossRef] [PubMed]

Fedeli, J.-M.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Feng, N. N.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Galan, J. V.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Garcia-Ruperez, J.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Garrido, B.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Gautier, P.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Girad, C.

J. C. Weeber, A. Dereux, C. Girad, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Goudonnet, J. P.

J. C. Weeber, A. Dereux, C. Girad, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Guider, R.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method3rd Ed. (Artech House, Boston, 2005).

Hainberger, R.

Han, Z.

Hegde, R.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103–221105 (2010).
[CrossRef]

Hernandez, S.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Holmgaard, T.

Hu, G.

Hvam, J. M.

Ji, Y.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jordana, E.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Krenn, J. R.

J. C. Weeber, A. Dereux, C. Girad, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength waveguide metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Laluet, J.-Y.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Lebour, Y.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Leosson, K.

Li, E. P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103–221105 (2010).
[CrossRef]

H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, (2009).
[CrossRef]

H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216–4223 (2007).
[CrossRef] [PubMed]

Li, Q.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Lipson, M.

Liu, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113(2011).
[CrossRef]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Ma, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Markey, L.

Marti, J.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Martinez, A.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Meier, J.

Mojahedi, M.

Muellner, P.

Nikolajsen, T.

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113(2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Pavesi, L.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405–075415 (2005).
[CrossRef]

Qiu, M.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Reinhardt, C.

Sanchis, P.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Seidel, A.

Søndergaard, T.

Song, Y.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Sorger, V. J.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113(2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Spano, R.

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405–075415 (2005).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method3rd Ed. (Artech House, Boston, 2005).

Tian, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Tong, L.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Vahldieck, R.

Van, V.

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength waveguide metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Weeber, J. C.

J. C. Weeber, A. Dereux, C. Girad, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Wellenzohn, M.

Wu, M.

Xu, Q.

Yang, Q.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Yun, B.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Zha, C.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Zhang, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113(2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Zhu, Z.

Appl. Phys. Lett. (2)

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103–221105 (2010).
[CrossRef]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121–231123(2010).
[CrossRef]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

J. Appl. Phys. (1)

H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, (2009).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nano Lett. (2)

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

A. Martınez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcıa-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J.-M. Fedeli, L. Pavesi, and J. Martı, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[CrossRef] [PubMed]

Nat. Commun. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[CrossRef]

Nat. Mater. (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113(2011).
[CrossRef]

Nat. Photon. (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (3)

J. C. Weeber, A. Dereux, C. Girad, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405–075415 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength waveguide metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method3rd Ed. (Artech House, Boston, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the 2D hybrid dielectric-loaded plasmonic waveguide with infinite width. (b) Comparison between the theoretical and numerical solution for the mode effective index ( N eff ) and the propagation length as a function of the SiO 2 -layer thickness d for a given thickness of the Si-layer t = 200 nm . (c) Plot of the dominant field component, E z , for t = 200 , d = 50 nm , determined theoretically, and by numerical calculation. Overall, the results show a good agreement between the theory and numerical simulation.

Fig. 2
Fig. 2

(a) Schematic of a 3D hybrid dielectric-loaded plasmonic waveguide. (b) The mode effective index together with the propagation length and (c) the confinement factor as functions of the waveguide width w for three Si-nanowire thicknesses t of 120, 150, and 180 nm . (d) The variation of the hybrid mode, shown for different thicknesses of the Si-nanowire of constant width 300 nm . The best hybrid mode confinement is achieved at the Si-nanowire thickness of 150 nm .

Fig. 3
Fig. 3

(a) Schematics of different subwavelength plasmonic waveguides: Planar hybrid dielectric-loaded plasmonic waveguide (HDLW) on the left-hand side, and metal-insulator-metal (MIM) on the right-hand side. Comparison between propagation characteristics of HDLW and MIM, (b) the effective refractive index, and (c) the propagation length and the confinement factor as functions of the waveguide width w. (d) The normalized intensity of the dominant component E z -field profile in the z-axis and in the cross-section y z -plane (inset view) of two studied waveguides.

Fig. 4
Fig. 4

(a) Composition and geometry of the planar hybrid dielectric-loaded plasmonic waveguide ring resonator (RR) in top-view and front-view. (b) Transmission of the RR with a gap width of 250 nm , two sets of the ring radii R = 2 , and 5 μm . (c) Normalized output intensities | E | 2 along the y-axis for the input and output channel at the constructive ( λ = 1.55 μm ) and deconstructive ( λ = 1.57 μm ) interference wavelength (value multiplied by 100), the insets show the intensity | E | 2 distributed in the RR at the previous constructive and deconstructive wavelengths. The RR dimensions are R = 2 μm and g = 250 nm .

Fig. 5
Fig. 5

(a) Composition and geometry of the planar hybrid dielectric-loaded plasmonic waveguide add-drop filter (ADF) in top-view and front-view. (b) Transmission at through-, drop-, and add-port of the ADF for a ring radius R = 2 μm and an optimal gap width g = 200 nm . (c) Near-field intensity distribution at 25 nm above the silver film for the RR with R = 2 μm at two different operating wavelengths: λ = 1.53 μm and λ = 1.566 μm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β 2 = β r + j β i = ε H k 0 2 k H 2 = ε L k 0 2 + γ L 2 = ε C k 0 2 + γ C 2 = ε M k 0 2 + γ M 2 .
tan ( k H t tan 1 ( ε C k H ε H γ C ) ) = ε H γ L ε L k H ( ε M γ L + ε L γ M ( ε M γ L ε L γ M ) exp ( 2 γ L d ) ε M γ L + ε L γ M + ( ε M γ L ε L γ M ) exp ( 2 γ L d ) ) ,
I C = guide P · d S ( w · d ) P · d S ,
P out = exp ( l L p ) α 2 + t 2 2 α t cos θ 1 + α 2 t 2 2 α t cos θ ,
P T = exp ( l T L p ) ( α t 2 ) 2 + t 1 2 2 α t 1 t 2 cos θ 1 + ( α t 1 t 2 ) 2 2 α t 1 t 2 cos θ , P D = exp ( l D L p ) ( 1 t 1 2 ) ( 1 t 1 2 ) α 1 + ( α t 1 t 2 ) 2 2 α t 1 t 2 cos θ ,

Metrics