Abstract

Trapped, laser-cooled atoms and ions produce intense fluorescence of the order 107108 photons per second. Detection of this fluorescence enables efficient measurement of the quantum state of qubits based on trapped atoms. It is desirable to collect a large fraction of the photons to make the detection faster and more reliable. Additionally, efficient fluorescence collection can improve the speed and fidelity of remote ion entanglement and quantum gates. Refractive and reflective optics, and optical cavities have all been used to collect the trapped ion fluorescence with up to about 10% efficiency. Here we show a novel ion trap design that incorporates a metallic spherical mirror as the integral part of the trap itself, being its RF electrode. The mirror geometry enables up to 35% solid angle collection of trapped ion fluorescence. The movable central pin electrode of this trap allows precise placement of the ion at the focus of the reflector. We characterize the performance of the mirror, and measure 25% collection efficiency, likely limited by the imperfections of the mirror surface. We also study the properties of the images of single ions formed by the spherical mirror and apply aberration correction with an aspherical element placed outside the vacuum system. Owing to the simplicity of its design, this trap structure can be adapted for microfabrication and integration into more complex trap architectures.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. DiVincenzo, “Dogma and heresy in quantum computing,” Quantum Inf. Comput. 1, 1-6 (2001).
  2. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709-711(2002).
    [CrossRef] [PubMed]
  3. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238-246 (2002).
    [CrossRef] [PubMed]
  4. B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Info. Proc. 3, 45-59 (2004).
    [CrossRef]
  5. C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
    [CrossRef]
  6. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
    [CrossRef] [PubMed]
  7. S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007).
    [CrossRef]
  8. A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
    [CrossRef] [PubMed]
  9. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221-3224(1997).
    [CrossRef]
  10. B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153-157 (2004).
    [CrossRef] [PubMed]
  11. L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. Comput. 4, 165-173 (2004).
  12. L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
    [CrossRef]
  13. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
    [CrossRef]
  14. P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
    [CrossRef] [PubMed]
  15. D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
    [CrossRef] [PubMed]
  16. K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556-560 (2007).
    [CrossRef]
  17. J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495-498 (2001).
    [CrossRef] [PubMed]
  18. W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74-77 (2009).
    [CrossRef] [PubMed]
  19. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024-1027 (2001).
    [CrossRef] [PubMed]
  20. A. Jechow, E. W. Streed, B. G. Norton, M. J. Petrasiunas, and D. Kielpinski, “Wavelength-scale imaging of trapped ions using a phase Fresnel lens,” Opt. Lett. 36, 1371-1373 (2011).
    [CrossRef] [PubMed]
  21. M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007).
    [CrossRef]
  22. R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009).
    [CrossRef]
  23. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075-1078 (2004).
    [CrossRef] [PubMed]
  24. H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009).
    [CrossRef]
  25. G. Shu, M. R. Dietrich, N. Kurz, and B. B. Blinov, “Trapped ion imaging with a high numerical aperture spherical mirror,” J. Phys. B 42, 154005 (2009).
    [CrossRef]
  26. G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321(2010).
    [CrossRef]
  27. J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).
  28. D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”
  29. M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
    [CrossRef]
  30. A. V. Steele, L. R. Churchill, P. F. Griffin, and M. S. Chapman, “Photoionization and photoelectric loading of barium ion traps,” Phys. Rev. A 75, 053404 (2007).
    [CrossRef]
  31. K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
    [CrossRef] [PubMed]
  32. K. Hinode and Y. Homma, “Whiskers grown on aluminum thin films during heat treatments,” J. Vac. Sci. Technol. A 14, 2570-2576 (1996).
    [CrossRef]
  33. D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, “Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si,” Opt. Express 11, 2244-2252 (2003).
    [CrossRef] [PubMed]
  34. J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”
  35. G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. DeLimaMonteiro, and M. Lokteva, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining,” Proc. SPIE 4945, 107-111 (2003).
    [CrossRef]
  36. S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767-769 (2003).
    [CrossRef]
  37. X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, “Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high qfactor,” Opt. Lett. 25, 1600-1602 (2000).
    [CrossRef]
  38. M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94 (2003).
    [CrossRef]
  39. Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003).
    [CrossRef]

2011 (1)

2010 (2)

G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321(2010).
[CrossRef]

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

2009 (5)

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74-77 (2009).
[CrossRef] [PubMed]

R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009).
[CrossRef]

H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009).
[CrossRef]

G. Shu, M. R. Dietrich, N. Kurz, and B. B. Blinov, “Trapped ion imaging with a high numerical aperture spherical mirror,” J. Phys. B 42, 154005 (2009).
[CrossRef]

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[CrossRef] [PubMed]

2008 (2)

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
[CrossRef]

2007 (5)

A. V. Steele, L. R. Churchill, P. F. Griffin, and M. S. Chapman, “Photoionization and photoelectric loading of barium ion traps,” Phys. Rev. A 75, 053404 (2007).
[CrossRef]

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007).
[CrossRef]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
[CrossRef] [PubMed]

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556-560 (2007).
[CrossRef]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007).
[CrossRef]

2006 (1)

L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[CrossRef]

2005 (1)

J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).

2004 (4)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153-157 (2004).
[CrossRef] [PubMed]

L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. Comput. 4, 165-173 (2004).

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Info. Proc. 3, 45-59 (2004).
[CrossRef]

2003 (6)

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, “Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si,” Opt. Express 11, 2244-2252 (2003).
[CrossRef] [PubMed]

G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. DeLimaMonteiro, and M. Lokteva, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining,” Proc. SPIE 4945, 107-111 (2003).
[CrossRef]

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767-769 (2003).
[CrossRef]

M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94 (2003).
[CrossRef]

Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003).
[CrossRef]

2002 (2)

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709-711(2002).
[CrossRef] [PubMed]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238-246 (2002).
[CrossRef] [PubMed]

2001 (3)

D. P. DiVincenzo, “Dogma and heresy in quantum computing,” Quantum Inf. Comput. 1, 1-6 (2001).

J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495-498 (2001).
[CrossRef] [PubMed]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024-1027 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
[CrossRef]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

1997 (1)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221-3224(1997).
[CrossRef]

1996 (1)

K. Hinode and Y. Homma, “Whiskers grown on aluminum thin films during heat treatments,” J. Vac. Sci. Technol. A 14, 2570-2576 (1996).
[CrossRef]

Abdelsalem, M.

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767-769 (2003).
[CrossRef]

Akhzar-Mehr, O.

D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, “Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si,” Opt. Express 11, 2244-2252 (2003).
[CrossRef] [PubMed]

G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. DeLimaMonteiro, and M. Lokteva, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining,” Proc. SPIE 4945, 107-111 (2003).
[CrossRef]

Allcock, D. T. C.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Amini, J. M.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Avril, A.

M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
[CrossRef]

Bakr, W. S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74-77 (2009).
[CrossRef] [PubMed]

Barrett, M.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

Barros, H. G.

H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009).
[CrossRef]

Bartlett, P. N.

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767-769 (2003).
[CrossRef]

Baumberg, J. J.

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767-769 (2003).
[CrossRef]

Bergner, B. C.

M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94 (2003).
[CrossRef]

Bergquist, J. C.

R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009).
[CrossRef]

Blain, M. G.

D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”

Blatt, R.

H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009).
[CrossRef]

J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495-498 (2001).
[CrossRef] [PubMed]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

Blinov, B. B.

G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321(2010).
[CrossRef]

G. Shu, M. R. Dietrich, N. Kurz, and B. B. Blinov, “Trapped ion imaging with a high numerical aperture spherical mirror,” J. Phys. B 42, 154005 (2009).
[CrossRef]

M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
[CrossRef]

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Info. Proc. 3, 45-59 (2004).
[CrossRef]

B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153-157 (2004).
[CrossRef] [PubMed]

L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. Comput. 4, 165-173 (2004).

Bohringer, K. F.

Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003).
[CrossRef]

Bowler, R.

M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
[CrossRef]

Britton, J.

R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009).
[CrossRef]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

Britton, R. B. B. J.

J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).

Brown, K. R.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Chang, M. S.

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

Chapman, M. S.

A. V. Steele, L. R. Churchill, P. F. Griffin, and M. S. Chapman, “Photoionization and photoelectric loading of barium ion traps,” Phys. Rev. A 75, 053404 (2007).
[CrossRef]

Chiaverini, J.

J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).

Chuang, I. L.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
[CrossRef]

Churchill, L. R.

A. V. Steele, L. R. Churchill, P. F. Griffin, and M. S. Chapman, “Photoionization and photoelectric loading of barium ion traps,” Phys. Rev. A 75, 053404 (2007).
[CrossRef]

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221-3224(1997).
[CrossRef]

Coyle, S.

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767-769 (2003).
[CrossRef]

Curtis, M. J.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Davies, M. A.

M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94 (2003).
[CrossRef]

de Lima Monteiro, D. W.

DeLimaMonteiro, D. W.

G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. DeLimaMonteiro, and M. Lokteva, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining,” Proc. SPIE 4945, 107-111 (2003).
[CrossRef]

DeMarco, B.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

Denton, D. D.

Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003).
[CrossRef]

Dietrich, M. R.

G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321(2010).
[CrossRef]

G. Shu, M. R. Dietrich, N. Kurz, and B. B. Blinov, “Trapped ion imaging with a high numerical aperture spherical mirror,” J. Phys. B 42, 154005 (2009).
[CrossRef]

M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
[CrossRef]

DiVincenzo, D. P.

D. P. DiVincenzo, “Dogma and heresy in quantum computing,” Quantum Inf. Comput. 1, 1-6 (2001).

Doret, S. C.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Duan, L. M.

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[CrossRef] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
[CrossRef] [PubMed]

L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[CrossRef]

B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153-157 (2004).
[CrossRef] [PubMed]

L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. Comput. 4, 165-173 (2004).

Edwards, E. E.

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

Eschner, J.

J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495-498 (2001).
[CrossRef] [PubMed]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

Evans, C. J.

M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94 (2003).
[CrossRef]

Faircloth, D.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Fan, X.

Folling, S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74-77 (2009).
[CrossRef] [PubMed]

Fortier, K. M.

D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”

Freericks, J. K.

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

Gillen, J. I.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74-77 (2009).
[CrossRef] [PubMed]

Gottesman, D.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
[CrossRef]

Grangier, P.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024-1027 (2001).
[CrossRef] [PubMed]

Greiner, M.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74-77 (2009).
[CrossRef] [PubMed]

Griffin, P. F.

A. V. Steele, L. R. Churchill, P. F. Griffin, and M. S. Chapman, “Photoionization and photoelectric loading of barium ion traps,” Phys. Rev. A 75, 053404 (2007).
[CrossRef]

Haltli, R.

D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”

Hanein, Y.

Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003).
[CrossRef]

Harter, A. W.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

Hayden, H.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Hayes, D.

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[CrossRef] [PubMed]

Highstrete, C.

D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”

Hinode, K.

K. Hinode and Y. Homma, “Whiskers grown on aluminum thin films during heat treatments,” J. Vac. Sci. Technol. A 14, 2570-2576 (1996).
[CrossRef]

Holman, G.

Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003).
[CrossRef]

Homma, Y.

K. Hinode and Y. Homma, “Whiskers grown on aluminum thin films during heat treatments,” J. Vac. Sci. Technol. A 14, 2570-2576 (1996).
[CrossRef]

Imreh, G.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Islam, R.

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

Itano, W. M.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

Jechow, A.

Jelenkovic, B.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

Jost, J.

J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

Kielpinski, D.

Killian, T.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Kim, K.

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

Kimble, H. J.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221-3224(1997).
[CrossRef]

Kohn, R. N.

L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[CrossRef]

Konermann, H.

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007).
[CrossRef]

Korenblit, S.

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

Kurz, N.

G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321(2010).
[CrossRef]

G. Shu, M. R. Dietrich, N. Kurz, and B. B. Blinov, “Trapped ion imaging with a high numerical aperture spherical mirror,” J. Phys. B 42, 154005 (2009).
[CrossRef]

M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
[CrossRef]

Lacey, S.

Landgren, D.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

Langer, C.

J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

Leibfried, D.

R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009).
[CrossRef]

J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Info. Proc. 3, 45-59 (2004).
[CrossRef]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

Leuchs, G.

R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009).
[CrossRef]

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007).
[CrossRef]

Li, X.

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556-560 (2007).
[CrossRef]

Lin, G. D.

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

Lindlein, N.

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007).
[CrossRef]

Lokteva, M.

G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. DeLimaMonteiro, and M. Lokteva, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining,” Proc. SPIE 4945, 107-111 (2003).
[CrossRef]

Lonergan, M. C.

Lucas, D.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

Lucas, D. M.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Lucke, P.

Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003).
[CrossRef]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221-3224(1997).
[CrossRef]

Madsen, M. J.

L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[CrossRef]

Maiwald, R.

R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009).
[CrossRef]

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007).
[CrossRef]

Matsukevich, D. N.

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[CrossRef] [PubMed]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007).
[CrossRef]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
[CrossRef] [PubMed]

Maunz, P.

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[CrossRef] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
[CrossRef] [PubMed]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007).
[CrossRef]

L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[CrossRef]

Merrill, J. T.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Meyer, V.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

Moehring, D. L.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
[CrossRef] [PubMed]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007).
[CrossRef]

L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[CrossRef]

L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. Comput. 4, 165-173 (2004).

B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153-157 (2004).
[CrossRef] [PubMed]

D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”

Monroe, C.

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[CrossRef] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
[CrossRef] [PubMed]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007).
[CrossRef]

L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[CrossRef]

B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153-157 (2004).
[CrossRef] [PubMed]

L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. Comput. 4, 165-173 (2004).

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Info. Proc. 3, 45-59 (2004).
[CrossRef]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709-711(2002).
[CrossRef] [PubMed]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238-246 (2002).
[CrossRef] [PubMed]

Myerson, A. H.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Nägerl, H. C.

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

Nelson, K. D.

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556-560 (2007).
[CrossRef]

Northup, T. E.

H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009).
[CrossRef]

Norton, B. G.

Olmschenk, S.

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[CrossRef] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
[CrossRef] [PubMed]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007).
[CrossRef]

Ozeri, R.

J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).

Pai, C.-S.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Palinginis, P.

Patterson, S. R.

M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94 (2003).
[CrossRef]

Peng, A.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74-77 (2009).
[CrossRef] [PubMed]

Peschel, U.

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007).
[CrossRef]

Petrasiunas, M. J.

Prakash, G. V.

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767-769 (2003).
[CrossRef]

Protsenko, I.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024-1027 (2001).
[CrossRef] [PubMed]

Raab, C.

J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495-498 (2001).
[CrossRef] [PubMed]

Reymond, G.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024-1027 (2001).
[CrossRef] [PubMed]

Rohde, H.

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

Roos, C.

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

Rosenband, T.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

Russo, C.

H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009).
[CrossRef]

Salacka, J. S.

M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
[CrossRef]

Sarro, P. M.

G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. DeLimaMonteiro, and M. Lokteva, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining,” Proc. SPIE 4945, 107-111 (2003).
[CrossRef]

D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, “Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si,” Opt. Express 11, 2244-2252 (2003).
[CrossRef] [PubMed]

Schabmueller, C. G. J.

Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003).
[CrossRef]

Schlosser, N.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024-1027 (2001).
[CrossRef] [PubMed]

Schmidt, P. O.

H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009).
[CrossRef]

Schmidt-Kaler, F.

J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495-498 (2001).
[CrossRef] [PubMed]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

Sherman, J. A.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Shu, G.

G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321(2010).
[CrossRef]

G. Shu, M. R. Dietrich, N. Kurz, and B. B. Blinov, “Trapped ion imaging with a high numerical aperture spherical mirror,” J. Phys. B 42, 154005 (2009).
[CrossRef]

M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
[CrossRef]

Slusher, R. E.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Sondermann, M.

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007).
[CrossRef]

Staccey, D. N.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Steane, A. M.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Steele, A. V.

A. V. Steele, L. R. Churchill, P. F. Griffin, and M. S. Chapman, “Photoionization and photoelectric loading of barium ion traps,” Phys. Rev. A 75, 053404 (2007).
[CrossRef]

Stick, D.

D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”

Streed, E. W.

Stute, A.

H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009).
[CrossRef]

Szwer, D. J.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Tigges, C.

D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”

Vdovin, G.

Vdovin, G. V.

G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. DeLimaMonteiro, and M. Lokteva, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining,” Proc. SPIE 4945, 107-111 (2003).
[CrossRef]

Vohra, R.

M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94 (2003).
[CrossRef]

Volin, C.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

Wang, H.

Webster, S. C.

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

Weiss, D. S.

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556-560 (2007).
[CrossRef]

Wineland, D. J.

R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009).
[CrossRef]

J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Info. Proc. 3, 45-59 (2004).
[CrossRef]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709-711(2002).
[CrossRef] [PubMed]

Wright, K.

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Younge, K. C.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007).
[CrossRef]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
[CrossRef] [PubMed]

Zeiger, T.

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221-3224(1997).
[CrossRef]

AIP Conf. Proc. (1)

M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008).
[CrossRef]

Appl. Phys. B (1)

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767-769 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003).
[CrossRef]

J. Phys. B (1)

G. Shu, M. R. Dietrich, N. Kurz, and B. B. Blinov, “Trapped ion imaging with a high numerical aperture spherical mirror,” J. Phys. B 42, 154005 (2009).
[CrossRef]

J. Vac. Sci. Technol. A (1)

K. Hinode and Y. Homma, “Whiskers grown on aluminum thin films during heat treatments,” J. Vac. Sci. Technol. A 14, 2570-2576 (1996).
[CrossRef]

Nat. Phys. (2)

R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009).
[CrossRef]

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556-560 (2007).
[CrossRef]

Nature (11)

J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495-498 (2001).
[CrossRef] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74-77 (2009).
[CrossRef] [PubMed]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024-1027 (2001).
[CrossRef] [PubMed]

B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153-157 (2004).
[CrossRef] [PubMed]

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
[CrossRef]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709-711(2002).
[CrossRef] [PubMed]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238-246 (2002).
[CrossRef] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010).
[CrossRef] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007).
[CrossRef] [PubMed]

New J. Phys. (1)

H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (4)

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007).
[CrossRef]

L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[CrossRef]

A. V. Steele, L. R. Churchill, P. F. Griffin, and M. S. Chapman, “Photoionization and photoelectric loading of barium ion traps,” Phys. Rev. A 75, 053404 (2007).
[CrossRef]

G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321(2010).
[CrossRef]

Phys. Rev. Lett. (4)

A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008).
[CrossRef] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221-3224(1997).
[CrossRef]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999).
[CrossRef]

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. DeLimaMonteiro, and M. Lokteva, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining,” Proc. SPIE 4945, 107-111 (2003).
[CrossRef]

M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94 (2003).
[CrossRef]

Quant. Info. Proc. (1)

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Info. Proc. 3, 45-59 (2004).
[CrossRef]

Quantum Inf. Comput. (3)

D. P. DiVincenzo, “Dogma and heresy in quantum computing,” Quantum Inf. Comput. 1, 1-6 (2001).

L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. Comput. 4, 165-173 (2004).

J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).

Other (2)

D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”

J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Concept of the tack trap and (a) pseudopotential simulation: (b) near the trapping center,(c) along the trap axis of symmetry, and (d) along the radial direction. The numbers are given in electron-volts for typical trapping RF parameters: RF frequency of 23 MHz and RF voltage of 270 V .

Fig. 2
Fig. 2

The construction of the tack trap. (a) Four spherical mirrors with holes drilled are placed on a U.S. penny for scale. (b) The overview of the trap structure showing the aluminum frame and structural other elements, as well as the needle and needle guide. (c) The side view showing the electric connection of the trap, with conductors shown in gray color and insulators in light blue.

Fig. 3
Fig. 3

Images of Ba + ions in the tack trap. (a) A single ion, (b) a symmetric 7-ion crystal, (c) an asymmetric 10-ion crystal, and (d) a larger (24-ion) crystal. All 10 ions are visible in (c), while (b) and (d) have some dark ions representing different isotopes of barium. (a), (b), and (c) are directly formed by a single micro objective; (d) is formed by being reflected off the mirror and collimated by additional commercial lenses.

Fig. 4
Fig. 4

The aberration compensation scheme. (a) The schematics of the optical setup showing the mirror, the vacuum viewport, the aspheric element, and the multielement low-NA micro objective. (b) The ideal point spread function calculated from simulations ( 0.97 μm ) reaches diffraction limit ( 1.15 μm ).

Fig. 5
Fig. 5

Demonstration of the effectiveness of the optical compensation scheme. (a) An ion crystal image without correction, where the large rings can be clearly seen due to spherical aberration, where 90 % of the light from the ions is spread. (b) A single ion image formed by the mirror-corrector system, and (c) the profile of the image. The full width at half-maximum of the peak is less than 100 μm , which is a significant improvement, but still far from diffraction limit ( 1.15 μm for this setup).

Fig. 6
Fig. 6

A proposal for microfabricaton of mirror traps. (a) First, a substrate with appropriate conductive layers is prepared. (b) A series of step guides are etched with standard microelectromechanical systems (MEMS) techniques, such as DRIE. A thin slot parallel to the section (not shown) can be etched to connect all the steps to allow plating fluid access to the entire surface. (c) An ellipsoid bead falls into the guide, finishing a self-assembly. (d) Current is run through all the conductive layers to plate metal into the gap between the bead and the substrate; the bead is then removed with chemical dissolution. (e) The substrate can then be polished down to the appropriate height. (f) The mirror surface can then be segmented and electrical connections are made. Note that different segments are insulated from each other. Two pseudopotential simulations show how the height of the trapping zone can be controlled by routing RF and ground electrodes to different parts of the mirror, where RF is represented by yellow and ground by green. (g) When the RF is applied on the upper two segments of the mirror, the trapping zone is lower, while (h) if the RF is applied to the top segment only, the trapping zone is raised higher, close to the focus of the elliptical mirror. The simulations predict deeper trapping potentials than in a planar trap of a similar scale.

Metrics