Abstract

We numerically and experimentally investigate the complete dynamics of the amplification process occurring in fiber optical parametric chirped pulse amplifiers. We show that, in the linear amplification regime, more than 30% of the pump can be converted into the signal with a very good temporal contrast higher than 65dB. Under strong saturation, this efficiency is kept constant but the temporal contrast of the signal significantly degrades.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dubietis, R. Butkus, and A. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
    [CrossRef]
  2. V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “5 Hz, >250 mJ optical parametric chirped-pulse amplifier at 1053 nm,” Opt. Lett. 30, 1843–1845 (2005).
    [CrossRef] [PubMed]
  3. E. Hugonnot, G. Deschaseaux, O. Hartmann, and H. Coic, “Design of PETAL multipetawatt high-energy laser front end based on optical parametric chirped pulse amplification,” Appl. Opt. 46, 8181–8187 (2007).
    [CrossRef] [PubMed]
  4. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
    [CrossRef]
  5. J. V. Rudd, R. J. Law, T. S. Luk, and S. M. Cameron, “High-power optical parametric chirped-pulse amplifier system with a 1.55 m signal and a 1.064 m pump,” Opt. Lett. 30, 1974–1976 (2005).
    [CrossRef] [PubMed]
  6. F. Tavella, A. Marcinkevicius, and F. Krausz, “90 mJ parametric chirped pulse amplification of 10 fs pulses,” Opt. Express 14, 12822–12827 (2006).
    [CrossRef] [PubMed]
  7. O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
    [CrossRef] [PubMed]
  8. O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, “Mid-IR short-pulse OPCPA with micro-Joule energy at 100 kHz,” Opt. Express 17, 3587–3594 (2009).
    [CrossRef] [PubMed]
  9. C. Erny, C. Heese, M. Haag, L. Gallmann, and U. Keller, “High-repetition-rate optical parametric chirped-pulse amplifier producing 1 mJ, sub-100-fs pulses in the mid-infrared,” Opt. Express 17, 1340–1345 (2009).
    [CrossRef] [PubMed]
  10. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tunnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
    [CrossRef] [PubMed]
  11. L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett. 36, 734–736 (2011).
    [CrossRef] [PubMed]
  12. J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).
  13. M. Hanna, F. Druon, and P. Georges, “Fiber optical parametric chirped-pulse amplification in the femtosecond regime,” Opt. Express 14, 2783–2790 (2006).
    [CrossRef] [PubMed]
  14. C. Caucheteur, D. Bigourd, E. Hugonnot, P. Szriftgiser, A. Kudlinski, M. Gonzalez-Herraez, and A. Mussot, “Experimental demonstration of optical parametric chirped pulse amplification in optical fiber,” Opt. Lett. 35, 1786–1788(2010).
    [CrossRef] [PubMed]
  15. Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
    [CrossRef]
  16. D. Bigourd, L. Lago, A. Mussot, A. Kudlinski, J.-F. Gleyze, and E. Hugonnot, “High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 m,” Opt. Lett. 35, 3480–3482 (2010).
    [CrossRef] [PubMed]
  17. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  19. O. V. Sinkin, R. Holzlhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003).
    [CrossRef]
  20. T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
    [CrossRef]
  21. A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22–24 (2006).
    [CrossRef]
  22. A. Betourne, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
    [CrossRef] [PubMed]

2011

2010

2009

2007

2006

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

M. Hanna, F. Druon, and P. Georges, “Fiber optical parametric chirped-pulse amplification in the femtosecond regime,” Opt. Express 14, 2783–2790 (2006).
[CrossRef] [PubMed]

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
[CrossRef] [PubMed]

F. Tavella, A. Marcinkevicius, and F. Krausz, “90 mJ parametric chirped pulse amplification of 10 fs pulses,” Opt. Express 14, 12822–12827 (2006).
[CrossRef] [PubMed]

A. Dubietis, R. Butkus, and A. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22–24 (2006).
[CrossRef]

2005

2003

2000

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

1997

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Andersen, T. V.

Bagnoud, V.

Barty, C.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Bates, P. K.

Bayart, D.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22–24 (2006).
[CrossRef]

Begishev, I. A.

Betourne, A.

Biegert, J.

Bigourd, D.

Blanchot, N.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Borneis, S.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Bouwmans, G.

Britten, J.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Butkus, R.

A. Dubietis, R. Butkus, and A. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

Cameron, S. M.

Cardoso, L.

Caucheteur, C.

Chalus, O.

Chekhlov, O. V.

Cheung, K.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Chui, P.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Coic, H.

Collier, J. L.

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
[CrossRef] [PubMed]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Danson, C.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Danson, C. N.

Dawson, J.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Deschaseaux, G.

Dinda, P.

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Douay, M.

Druon, F.

Dubietis, A.

A. Dubietis, R. Butkus, and A. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

Durecu-Legrand, A.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22–24 (2006).
[CrossRef]

Eidam, T.

Erny, C.

Gabler, T.

Gallmann, L.

Georges, P.

Gleyze, J.-F.

Gonzalez-Herraez, M.

Guardalben, M. J.

Haag, M.

Hancock, S.

Hanf, S.

Hanna, M.

Hartmann, O.

Heese, C.

Hernandez-Gomez, C.

Holzlhner, R.

Hugonnot, E.

Jovanovic, I.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Jungquist, R.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Keller, U.

Kelly, J. H.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Kessler, T. J.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Krausz, F.

Kruschwitz, B.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Kudlinski, A.

Lago, L.

Langley, A. J.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Lantz, E.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22–24 (2006).
[CrossRef]

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Law, R. J.

LeBlanc, C.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

LeGarrec, B.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Li, Q.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Limpert, J.

Luk, T. S.

Maillotte, H.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22–24 (2006).
[CrossRef]

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Marcinkevicius, A.

Marhic, M. E.

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

Matousek, P.

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
[CrossRef] [PubMed]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Menyuk, C. R.

Miyanga, N.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Moses, E.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Moubissi, A.

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Mussot, A.

Neely, D.

Notley, M.

Piskarskas, A.

A. Dubietis, R. Butkus, and A. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

Pitois, S.

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Puth, J.

Quiquempois, Y.

Rambo, P. K.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Ross, I. N.

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
[CrossRef] [PubMed]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Rudd, J. V.

Schmid, A. W.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Schreiber, T.

Seise, E.

Shaikh, W.

Simonneau, C.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22–24 (2006).
[CrossRef]

Sinkin, O. V.

Smolarski, M.

Sylvestre, T.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22–24 (2006).
[CrossRef]

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Szriftgiser, P.

Tavella, F.

Towrie, M.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Tunnermann, A.

Vanvincq, O.

Waxer, L. J.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Wirth, C.

Wong, K.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Yang, S.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Zhou, Y.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Zuegel, J. D.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “5 Hz, >250 mJ optical parametric chirped-pulse amplifier at 1053 nm,” Opt. Lett. 30, 1843–1845 (2005).
[CrossRef] [PubMed]

Zweck, J.

Appl. Opt.

Fusion Sci. Technol.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

IEEE J. Sel. Top. Quantum Electron.

A. Dubietis, R. Butkus, and A. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22–24 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. A

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Opt. Commun.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

A. Betourne, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tunnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

C. Caucheteur, D. Bigourd, E. Hugonnot, P. Szriftgiser, A. Kudlinski, M. Gonzalez-Herraez, and A. Mussot, “Experimental demonstration of optical parametric chirped pulse amplification in optical fiber,” Opt. Lett. 35, 1786–1788(2010).
[CrossRef] [PubMed]

D. Bigourd, L. Lago, A. Mussot, A. Kudlinski, J.-F. Gleyze, and E. Hugonnot, “High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 m,” Opt. Lett. 35, 3480–3482 (2010).
[CrossRef] [PubMed]

L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett. 36, 734–736 (2011).
[CrossRef] [PubMed]

V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “5 Hz, >250 mJ optical parametric chirped-pulse amplifier at 1053 nm,” Opt. Lett. 30, 1843–1845 (2005).
[CrossRef] [PubMed]

J. V. Rudd, R. J. Law, T. S. Luk, and S. M. Cameron, “High-power optical parametric chirped-pulse amplifier system with a 1.55 m signal and a 1.064 m pump,” Opt. Lett. 30, 1974–1976 (2005).
[CrossRef] [PubMed]

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
[CrossRef] [PubMed]

Other

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Temporal shape of the pump (broader red curves) and of the stretched signal (narrower blue curves) at the input of the fiber in experiments (solid curves) and numerics (dashed curves). (b) Experimental parametric fluorescence (dashed curve), output spectrum [blue solid (top) curve], and input signal [(red solid (bottom) curve]. Note that, for the sake of clarity, this signal has been expanded by a 8 dB factor. (c) Experimental autocorrelation traces of the recompressed pulse with and without the amplifying fiber stage (respectively, crosses and circles). (d) Evolution of the gain in energy as a function of the fiber length.

Fig. 2
Fig. 2

Small signal gain curves for a monochromatic signal at z = 240 m (blue curve) and Z = 100 m (red curve). The input spectrum of the signal is superimposed by a dashed curve with a linear scale.

Fig. 3
Fig. 3

(a) Gain in energy versus fiber length. The dashed curve represents the gain in power of a monochromatic signal centered at 1053 nm . (b) Evolution of the ratio of the signal energy over the input pump energy as a function of fiber length.

Fig. 4
Fig. 4

Evolution of the gain in energy as a function of the input signal energy for a FOPCPA of 100 m length (circles) and 240 m length (crosses).

Fig. 5
Fig. 5

Spectra at (a)  z = 100 m and (b)  z = 240 m . The input signal spectrum in linear scale is represented by dashed curves in both figures.

Fig. 6
Fig. 6

Evolution of (a) the spectral gain curve and (b) the spectrum as a function of the fiber length.

Fig. 7
Fig. 7

Temporal characteristics of the pump (broader solid red curve) and of the signal before compression (narrower solid blue curve) for different fiber lengths (a) 100, (b) 140, (c) 180, and (d)  240 m . The dashed curve represents the input pump pulse.

Fig. 8
Fig. 8

Spectrogram of the stretched signal for different fiber lengths of (a) 100, (b) 140, (c) 180, and (d)  240 m . The gate is a Gaussian with a duration of 50 ps at FWHM.

Fig. 9
Fig. 9

(a)–(d) Recompressed signals for different lengths. The input signal is represented by dashed curves and is normalized to the peak power of each signal. (e) Evolution of the peak power as a function of the fiber length.

Fig. 10
Fig. 10

Evolution of the contrast at 10 and 100 ps from the peak of the signal. Insets at z = 100 m and z = 240 m represent the temporal trace of the recompressed signals in logarithmic scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z A ( z , τ ) = ( i β 2 2 τ 2 + β 3 6 τ 3 α / 2 + i γ + R ( τ ) | A ( z , τ τ ) | 2 d τ ) A ( z , τ ) ,

Metrics