Abstract

By placing a metallic layer of a periodic nanostrip array above a metallic layer of a periodic nanogroove array with a separation of 120nm, we obtain a triple-band thin film absorber with all its resonant wavelengths displaying absorptivity greater than 90%. Through a systematic study of the current compound structure, we find these three absorption peaks mainly depend on some simple resonances, i.e., the modes supported by the nanostrip array in the top layer, the nanogroove array in the bottom layer, and the horizontal cavity between the two layers. In addition, we show that this kind of absorber is quite robust and fairly insusceptible to the parallel shift between the two different layers. This study should contribute to the design of thin film absorbers/emitters.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  2. T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
    [CrossRef]
  3. J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408(2008).
    [CrossRef] [PubMed]
  4. E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17, 6770–6781 (2009).
    [CrossRef] [PubMed]
  5. T. Sondergaard and I. B. Sergey, “Surface plasmon polariton resonances in triangular groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
    [CrossRef]
  6. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
    [CrossRef]
  7. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
    [CrossRef]
  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  9. M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol. A 25, 437–440 (2007).
    [CrossRef]
  10. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
    [CrossRef]
  11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
    [CrossRef] [PubMed]
  12. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  13. W. Hu, X. Chen, Z. Ye, C. Lin, F. Yin, and W. Lu, “Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector,” Opt. Quantum Electron. 41, 699–704 (2010).
    [CrossRef]
  14. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  15. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  16. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106–6121 (2004).
    [CrossRef] [PubMed]
  17. G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302–308 (2009).
    [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  19. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  20. Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Thin film absorbers based on plasmonic phase resonances,” arXiv:1007.5079 (2010).
  21. Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nano cavity antenna,” Opt. Lett. 34, 16–18 (2009).
    [CrossRef]
  22. Y. Cui, J. Hu, and S. He, “Nanocavity antenna array assisted enhancing extraordinary optical transmission of light through a metallic nanoslit,” J. Opt. Soc. Am. B 26, 2131–2135(2009).
    [CrossRef]
  23. P. H. Alastair, R. H. Ian, J. L. Matthew, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
    [CrossRef]

2010 (2)

W. Hu, X. Chen, Z. Ye, C. Lin, F. Yin, and W. Lu, “Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector,” Opt. Quantum Electron. 41, 699–704 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

2009 (7)

2008 (5)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408(2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

2007 (1)

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol. A 25, 437–440 (2007).
[CrossRef]

2006 (1)

P. H. Alastair, R. H. Ian, J. L. Matthew, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

2004 (1)

1998 (1)

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[CrossRef]

1986 (1)

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Alastair, P. H.

P. H. Alastair, R. H. Ian, J. L. Matthew, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Barbara, A.

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408(2008).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Bonod, N.

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Brongersma, M. L.

Chang, Y. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

Chen, C. Y.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

Chen, X.

W. Hu, X. Chen, Z. Ye, C. Lin, F. Yin, and W. Lu, “Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector,” Opt. Quantum Electron. 41, 699–704 (2010).
[CrossRef]

Cui, Y.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Enoch, S.

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Fan, S.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Thin film absorbers based on plasmonic phase resonances,” arXiv:1007.5079 (2010).

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Thin film absorbers based on plasmonic phase resonances,” arXiv:1007.5079 (2010).

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[CrossRef]

Gaylord, T. K.

He, S.

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Hu, J.

Hu, W.

W. Hu, X. Chen, Z. Ye, C. Lin, F. Yin, and W. Lu, “Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector,” Opt. Quantum Electron. 41, 699–704 (2010).
[CrossRef]

Ian, R. H.

P. H. Alastair, R. H. Ian, J. L. Matthew, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

Jiang, Y. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Kocabas, S. E.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Lee, S. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

Lin, C.

W. Hu, X. Chen, Z. Ye, C. Lin, F. Yin, and W. Lu, “Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector,” Opt. Quantum Electron. 41, 699–704 (2010).
[CrossRef]

López-Rios, T.

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408(2008).
[CrossRef] [PubMed]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[CrossRef]

Lu, W.

W. Hu, X. Chen, Z. Ye, C. Lin, F. Yin, and W. Lu, “Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector,” Opt. Quantum Electron. 41, 699–704 (2010).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mansuripur, M.

Mantese, J. V.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol. A 25, 437–440 (2007).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Matthew, J. L.

P. H. Alastair, R. H. Ian, J. L. Matthew, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[CrossRef]

Miller, D. A. B.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Moharam, M. G.

Moloney, J. V.

Murray, M. E.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol. A 25, 437–440 (2007).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Pannetier, B.

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[CrossRef]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Perchec, J. L.

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408(2008).
[CrossRef] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Popov, E.

Quémerais, P.

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408(2008).
[CrossRef] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

P. H. Alastair, R. H. Ian, J. L. Matthew, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

Sanchez-Dehesa, J.

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[CrossRef]

Sergey, I. B.

T. Sondergaard and I. B. Sergey, “Surface plasmon polariton resonances in triangular groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Sondergaard, T.

T. Sondergaard and I. B. Sergey, “Surface plasmon polariton resonances in triangular groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Thompson, M. P.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol. A 25, 437–440 (2007).
[CrossRef]

Thrush, C. M.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol. A 25, 437–440 (2007).
[CrossRef]

Troxell, J. R.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol. A 25, 437–440 (2007).
[CrossRef]

Tsai, D. P.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

Tsai, M. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

Veronis, G.

Wang, C. M.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Xie, Y.

Xu, J.

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Thin film absorbers based on plasmonic phase resonances,” arXiv:1007.5079 (2010).

Ye, Y. H.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

Ye, Z.

W. Hu, X. Chen, Z. Ye, C. Lin, F. Yin, and W. Lu, “Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector,” Opt. Quantum Electron. 41, 699–704 (2010).
[CrossRef]

Yin, F.

W. Hu, X. Chen, Z. Ye, C. Lin, F. Yin, and W. Lu, “Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector,” Opt. Quantum Electron. 41, 699–704 (2010).
[CrossRef]

Yu, Z.

Zakharian, A. R.

Zayats,

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (1)

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett. 20, 1103–1105 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. A (1)

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol. A 25, 437–440 (2007).
[CrossRef]

Nano Lett. (1)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef] [PubMed]

Nat. Photon. (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

W. Hu, X. Chen, Z. Ye, C. Lin, F. Yin, and W. Lu, “Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector,” Opt. Quantum Electron. 41, 699–704 (2010).
[CrossRef]

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Phys. Rev. B (2)

T. Sondergaard and I. B. Sergey, “Surface plasmon polariton resonances in triangular groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998).
[CrossRef]

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408(2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

P. H. Alastair, R. H. Ian, J. L. Matthew, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Other (3)

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Thin film absorbers based on plasmonic phase resonances,” arXiv:1007.5079 (2010).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Configuration of the proposed double-layered nanostructure formed by placing periodic metallic nanostrips on top of metallic nanogrooves. P = 1100 nm , W = 900 nm , h = 300 nm , W g = 50 nm , and h g = 230 nm . (b) Absorption spectrum when d = 120 nm (thick) compared with that for the structure with only the bottom layer of metallic nanogrooves (thin). (c) Absorption spectra when d is tuned from 70 to 320 nm with three major absorption bands labeled Type 1–3 resonances, respectively. The situation when d = 120 nm is noted by the dotted line.

Fig. 2
Fig. 2

(a) Absorption spectra for our double-layered absorber when d = 200 nm (thick) and a single-layered absorber of only the nanostrip array (thin solid) (shown in the inset). The thin dashed curve represents the transmission spectrum for the metallic nanostrip array. (b) Field distribution ( | H y | ) for the metallic nanostrip array at its resonant wavelength. (c)–(e) Field distributions for our absorber at Type 1 resonance when d = 100 , 200, and 300 nm , respectively.

Fig. 3
Fig. 3

(a) Absorption spectra for our double-layered absorber when d = 200 nm (thick) and a single-layered absorber of only the nanogroove array (thin) (shown in the inset). (b) Field distribution for the nanogroove array at its resonant wavelength. (c)–(e) Field distributions for our proposed absorber at Type 2 resonance when d = 100 , 200, and 300 nm , respectively.

Fig. 4
Fig. 4

(a) Absorption spectra for our double-layered absorber when d = 100 nm (thick) and also a control case after filling the grooves with metal (thin) (shown in the inset). (b) Field distribution for the control case at its resonant wavelength. (c) Field distribution for our absorber at Type 3 resonance when d = 100 nm . The inset in (c) is an enlarged plot with color scale [ 0 , 6 ] . (d) Field distribution for our absorber at Type 3 resonance when S x = 137.5 nm while other parameters are the same as those in (c).

Fig. 5
Fig. 5

Distributions of magnetic field | H y | and phase Φ ( H y ) for the plasmonic phase resonance when (a), (b)  d = 120 nm and (c), (d)  d = 30 nm . (e) Absorption spectrum of our double-layered absorber when d = 30 nm .

Fig. 6
Fig. 6

Absorption spectrum at normal incidence when the relative position of different layers along the x direction ( S x ) is tuned from 0 to 137.5 nm .

Metrics