Abstract

We present a new nanoscale modulation scheme based on the formation of a plasmonic Young interference pattern and its collection by an excitation field pattern-sensitive metal–insulator–metal (MIM) waveguide. Our numerical investigations reveal that such a scheme can generate sensitive and quasi-linear changes in the output power level in response to the relative phase difference between the waves in the two Young interferometer branches. Thanks to the asymmetric positioning of the collector waveguide, the response becomes most sensitive and linear when the relative phase difference is close to zero. Such a response characteristic can benefit future plasmonic systems by eliminating the need for phase prebiasing. The strong interactions between the surface plasmon polaritons inside the MIM structures are also utilized for realizing functionalities beyond modulation, such as on/off modulation contrast enhancement and all-plasmonic and logic operation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
    [CrossRef]
  2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
    [CrossRef]
  3. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010).
    [CrossRef]
  4. W. K. Burns, “Linearized optical modulator with fifth order correction,” J. Lightwave Technol. 13, 1724–1727(1995).
    [CrossRef]
  5. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
    [CrossRef] [PubMed]
  6. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
    [CrossRef]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  8. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
    [CrossRef]
  9. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
    [CrossRef] [PubMed]
  10. J. Lee and J. Kim, “Numerical investigation of quasi-coplanar plasmonic waveguide-based photonic components,” Opt. Express 16, 9691–9700 (2008).
    [CrossRef] [PubMed]
  11. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
    [CrossRef]
  12. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
    [CrossRef] [PubMed]
  13. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [CrossRef]
  14. Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
    [CrossRef] [PubMed]
  15. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2, 426–429 (2007).
    [CrossRef]
  16. H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15, 11321–11327 (2007).
    [CrossRef] [PubMed]
  17. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
    [CrossRef] [PubMed]
  18. S. Ravets, J. C. Rodier, B. E. Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, “Surface plasmons in the Young slit doublet experiment,” J. Opt. Soc. Am. B 26, B28–B33(2009).
    [CrossRef]
  19. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
    [CrossRef]
  20. M. A. Vincenti, A. D’Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant subwavelength slits filled with a nonlinear material,” J. Opt. Soc. Am. B 26, 301–307 (2009).
    [CrossRef]
  21. Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
    [CrossRef]
  22. Y. Zhao, S.-C. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18, 23458–23465 (2010).
    [CrossRef] [PubMed]
  23. L. Zhao, Y. Li, J. Qi, J. Xu, and Q. Sun, “Light focusing by the unique dielectric nano-waveguide array,” Opt. Express 17, 17136–17143 (2009).
    [CrossRef] [PubMed]
  24. T. Xu, C. Wang, C. Du, and X. Luo, “Plasmonic beam deflector,” Opt. Express 16, 4753–4759 (2008).
    [CrossRef] [PubMed]
  25. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15, 9541–9546 (2007).
    [CrossRef] [PubMed]
  26. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [CrossRef] [PubMed]
  27. Comsol Multiphysics, Comsol Inc., Burlington, Mass., USA.
  28. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  29. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
    [CrossRef] [PubMed]
  30. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994(2009).
    [CrossRef] [PubMed]
  31. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
    [CrossRef] [PubMed]
  32. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514(2008).
    [CrossRef] [PubMed]

2010

2009

2008

2007

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2, 426–429 (2007).
[CrossRef]

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15, 9541–9546 (2007).
[CrossRef] [PubMed]

H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15, 11321–11327 (2007).
[CrossRef] [PubMed]

2006

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[CrossRef] [PubMed]

2005

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

2004

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

1995

W. K. Burns, “Linearized optical modulator with fifth order correction,” J. Lightwave Technol. 13, 1724–1727(1995).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

’t Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Agrawal, G. P.

Akozbek, N.

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Andersen, T. B.

Arbel, D.

Aussenegg, F. R.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

Bloemer, M. J.

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Brongersma, M. L.

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2, 426–429 (2007).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Buchwald, W.

Buncick, M.

Burns, W. K.

W. K. Burns, “Linearized optical modulator with fifth order correction,” J. Lightwave Technol. 13, 1724–1727(1995).
[CrossRef]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Chen, Z.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

D’Orazio, A.

Deng, Y.

Dereux, A.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Ditlbacher, H.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

Drezet, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

Du, C.

T. Xu, C. Wang, C. Du, and X. Luo, “Plasmonic beam deflector,” Opt. Express 16, 4753–4759 (2008).
[CrossRef] [PubMed]

H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15, 11321–11327 (2007).
[CrossRef] [PubMed]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
[CrossRef]

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Fang, G.

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Fu, Y.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Ginzburg, P.

Gosciniak, J.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Hao, Q.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

Hattori, H. T.

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Hohenau, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

Holmgaard, T.

Hosseini, A.

Huang, T. J.

Huang, X. G.

Hugonin, J. P.

Jacubowiez, L.

Jiao, X.

Jin, X.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kim, B. E.

Kim, H. K.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Kim, J.

Kiraly, B.

Kjelstrup-Hansen, J.

Krasavin, A. V.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

Krenn, J. R.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Lalanne, P.

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Lee, J.

Leitner, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Li, Y.

Lim, L. E. N.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
[CrossRef]

Lin, S.-C. S.

Lin, X.

Liu, J.

Liu, S.

Liu, Y.

Luo, X.

T. Xu, C. Wang, C. Du, and X. Luo, “Plasmonic beam deflector,” Opt. Express 16, 4753–4759 (2008).
[CrossRef] [PubMed]

H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15, 11321–11327 (2007).
[CrossRef] [PubMed]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010).
[CrossRef]

Markey, L.

Massoud, Y.

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

Min, C.

Ming, H.

Nawaz, A. A.

Nejati, H.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

Orenstein, M.

Pannipitiya, A.

Peale, R. E.

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

Premaratne, M.

Qi, J.

Ravets, S.

Rodier, J. C.

Rukhlenko, I. D.

Scalora, M.

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Shi, H.

H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15, 11321–11327 (2007).
[CrossRef] [PubMed]

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
[CrossRef]

Soref, R.

Steinberger, B.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

Stepanov, A. L.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

Sun, Q.

Sun, Z.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Tao, J.

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

Vincenti, M. A.

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Volkov, V. S.

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Wang, C.

Wang, C. T.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
[CrossRef]

Wang, P.

Xu, J.

Xu, T.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef] [PubMed]

Zhang, Q.

Zhang, Y.

Zhao, H.

Zhao, L.

Zhao, Y.

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010).
[CrossRef]

Zhou, W.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
[CrossRef]

Zia, R.

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2, 426–429 (2007).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Appl. Phys. B

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006).
[CrossRef]

Appl. Phys. Lett.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

J. Lightwave Technol.

W. K. Burns, “Linearized optical modulator with fifth order correction,” J. Lightwave Technol. 13, 1724–1727(1995).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010).
[CrossRef]

Mater. Today

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Nat. Nanotechnol.

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2, 426–429 (2007).
[CrossRef]

Nat. Photon.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express

J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994(2009).
[CrossRef] [PubMed]

L. Zhao, Y. Li, J. Qi, J. Xu, and Q. Sun, “Light focusing by the unique dielectric nano-waveguide array,” Opt. Express 17, 17136–17143 (2009).
[CrossRef] [PubMed]

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
[CrossRef] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[CrossRef] [PubMed]

A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
[CrossRef] [PubMed]

Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
[CrossRef] [PubMed]

Y. Zhao, S.-C. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18, 23458–23465 (2010).
[CrossRef] [PubMed]

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15, 9541–9546 (2007).
[CrossRef] [PubMed]

H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15, 11321–11327 (2007).
[CrossRef] [PubMed]

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
[CrossRef] [PubMed]

T. Xu, C. Wang, C. Du, and X. Luo, “Plasmonic beam deflector,” Opt. Express 16, 4753–4759 (2008).
[CrossRef] [PubMed]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514(2008).
[CrossRef] [PubMed]

J. Lee and J. Kim, “Numerical investigation of quasi-coplanar plasmonic waveguide-based photonic components,” Opt. Express 16, 9691–9700 (2008).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

Phys. Rev. Lett.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Plasmonics

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[CrossRef]

Other

Comsol Multiphysics, Comsol Inc., Burlington, Mass., USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the PYI/collector-based plasmonic modulator consisting of two MIM feed waveguides and one output waveguide with tapered input end. Two additional waveguides are installed in vertical directions to drain the residual power. The position of the output coupler is set to enhance the sensitivity to phase difference.

Fig. 2
Fig. 2

Changes in near-field patterns due to the interference between the outputs of two Au MIM SPP waveguides as a function of the phase difference Δ φ = φ 1 φ 2 . The operation wavelength λ o is 780 nm , the waveguide widths w i 1 and w i 2 are 50 nm , and the separation between the waveguides d is 500 nm . The blank areas represent regions with | E | higher than 50, which were suppressed from plotting to emphasize the low-intensity portion.

Fig. 3
Fig. 3

(a)–(d)  | E | patterns for different values of Δ φ . The blank spots represent areas with | E | saturation. The Δ φ -induced changes in | E | and the corresponding decrease in the power coupled to WG5 are clearly visible. (e) The transmission normalized to the Δ φ = 0 value. The curve with solid circles represents the response of the PYI/collector scheme. The MZI response is superimposed for comparison. λ o = 780 nm .

Fig. 4
Fig. 4

Changes in | E | patterns due to Δ φ . The white arrows represent the electric field vectors. When Δ φ = 0 , a strong E component is formed between A and B, leading to the excitation of the MIM mode along the taper. On the other hand, when Δ φ = 0.3 π , the E at A and B become both vertical to the A B line, resulting in the suppression of MIM mode excitation. The blank spots represent areas with | E | saturation.

Fig. 5
Fig. 5

(a)–(d) show | E | of a silicide–polymer PYI/collector as a function of Δ φ at λ o = 1550 nm . The blank spots represent areas of | E | saturation. As in the λ o = 780 nm case, the transmission decreases rapidly with increasing Δ φ . (e) The normalized transmission as a function of Δ φ . The curve with solid circles represents the response of the PYI/collector scheme. The MZI response is superimposed for comparison.

Fig. 6
Fig. 6

Changes in | E | patterns due to Δ φ . The white arrows represent the electric field vectors. When Δ φ = 0 , the charge distributions in A and B become perfectly out of phase, leading to the excitation of the MIM mode along the collector. On the other hand, when Δ φ = 0.3 π , the E around both A and B become horizontal in direction, resulting in the suppression of MIM mode excitation. The blank spots represent areas with | E | saturation.

Fig. 7
Fig. 7

(a) and (b) Impact of adding extra drain wave guides to the silicide–polymer PYI/collector on | E | at two different values of Δ φ ( λ o = 1550 nm ). The blank spots represent the areas with | E | saturation. (c) Normalized transmission as a function of Δ φ in log scale. The added drain waveguides reduce the output power at Δ φ 0 by 7.5 dB .

Fig. 8
Fig. 8

Symmetrized PYI/collector for logic gate operation. (a)–(c)  | E | as a function of the inputs to WG1 and WG2. The output drops by 6 dB for 3 dB reduction in the input power, leading to an all-plasmonic and operation. (d) shows that the operation is relatively more insensitive to Δ φ than the one by the asymmetric configuration. The blank spots represent areas with | E | saturation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T P out / P in = cos 2 ( Δ φ / 2 ) .

Metrics