Abstract

With one pair of photons’ polarization-entangled state as the quantum channel, we present an explicit generalized linear optical protocol for perfectly teleporting an N-photon Greenberger–Horne–Zeilinger (GHZ) polarization-entangled state from a sender to a receiver using only one two-photon polarization-entangled state as the quantum channel. This protocol has the advantage of transmitting much fewer photons and classical information for teleporting the N-photon GHZ polarization-entangled state than others, and the proposed setup involves simple linear optical elements, photon polarization-entangled states, and conventional photon detectors. These make the present protocol more realizable in experiments.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993).
    [CrossRef] [PubMed]
  2. Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388-392 (2005).
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  4. W. Y. Wang, C. Wang, K. Wen, and G. L. Long, “Quantum key distribution network based on differential phase shift,” Chin. Phys. Lett. 24, 1463-1466 (2007).
    [CrossRef]
  5. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with EinsteiN-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
    [CrossRef]
  6. Y. Xia and H. S. Song, “Controlled quantum secure direct communication using a noN-symmetric quantum channel with quantum superdense coding,” Phys. Lett. A 364, 117-122 (2007).
    [CrossRef]
  7. B. Zeng and P. Zhang, “Remote-state preparation in higher dimension and the parallelizable manifold Sn−1,” Phys. Rev. A 65, 022316 (2002).
    [CrossRef]
  8. C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle GreeN-Horne-Zeilinger state,” Opt. Commun. 253, 15-20 (2005).
    [CrossRef]
  9. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394-4400 (1998).
    [CrossRef]
  10. J. Lee, H. Min, and S. D. Oh, “Multipartite entanglement for entanglement teleportation,” Phys. Rev. A 66, 052318 (2002).
    [CrossRef]
  11. D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998).
    [CrossRef]
  12. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
    [CrossRef]
  13. H. W. Lee and J. Kim, “Quantum teleportation and Bells inequality using single-particle entanglement,” Phys. Rev. A 63, 012305 (2000).
    [CrossRef]
  14. G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
    [CrossRef]
  15. Y. Yeo and W. K. Chua, “Teleportation and dense coding with genuine multipartite entanglement,” Phys. Rev. Lett. 96, 060502 (2006).
    [CrossRef] [PubMed]
  16. B. Zeng, X. S. Liu, Y. S. Li, and G. L. Long, “High-dimensional multi-particle cat-like state teleportation,” Commun. Theor. Phys. 38, 537-540 (2002).
  17. L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473-1476 (1994).
    [CrossRef] [PubMed]
  18. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869-872 (1998).
    [CrossRef]
  19. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
    [CrossRef]
  20. H. Kim, Y. W. Cheong, and H. W. Lee, “Generalized measurement and conclusive teleportation with nonmaximal entanglement,” Phys. Rev. A 70, 012309 (2004).
    [CrossRef]
  21. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996).
    [CrossRef] [PubMed]
  22. P. Zhou, X. H. Li, F. G. Deng, and H. Y. Zhou, “Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing,” Chin. Phys. 16, 2867-2874 (2007).
    [CrossRef]
  23. P. Agrawal and A. K. Pati, “Probabilistic quantum teleportation,” Phys. Lett. A 305, 12-17 (2002).
    [CrossRef]
  24. G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
    [CrossRef]
  25. G. Gordon and G. Rigolin, “Generalized quantum-state sharing,” Phys. Rev. A 73, 062316 (2006).
    [CrossRef]
  26. Y. Xia, J. Song, and H. S. Song, “Re-examining generalized teleportation protocol,” Opt. Commun. 279, 395-398 (2007).
    [CrossRef]
  27. Y. Xia, J. Song, H. S. Song, and S. Zhang, “Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors,” J. Opt. Soc. Am. B 26, 129-132 (2009).
    [CrossRef]
  28. J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001).
    [CrossRef]
  29. An example that transforms |0000⟩ to (1/2)(|0000⟩+|1111⟩) is given in Fig. in . The protocol involves only two kinds of operations: a Hadamard transformation plays on the first qubit and three controlled-Not gates play on the last three qubits, respectively. In the last qubit, the rotation is either π/2 for (1/2)(|0000⟩+|1111⟩) or −π/2(1/2)(|0000⟩−|1111⟩).
  30. G. L. Long and Y. Sun, “Efficient scheme for initializing a quantum register with an arbitrary superposed state,” Phys. Rev. A 64, 014303 (2001).
    [CrossRef]
  31. S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
    [CrossRef] [PubMed]
  32. S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007).
    [CrossRef] [PubMed]
  33. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
    [CrossRef] [PubMed]
  34. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000).
    [CrossRef] [PubMed]
  35. D. F. V. James and P. G. Kwiat, “Atomic-vapor-based high efficiency optical detectors with photon number resolution,” Phys. Rev. Lett. 89, 183601 (2002).
    [CrossRef] [PubMed]
  36. J. Kim, S. Takeuchi, and Y. Yamamoto, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74, 902-904 (1999).
    [CrossRef]
  37. J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435 (2001).
    [CrossRef] [PubMed]

2009

2008

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

2007

P. Zhou, X. H. Li, F. G. Deng, and H. Y. Zhou, “Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing,” Chin. Phys. 16, 2867-2874 (2007).
[CrossRef]

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007).
[CrossRef] [PubMed]

Y. Xia, J. Song, and H. S. Song, “Re-examining generalized teleportation protocol,” Opt. Commun. 279, 395-398 (2007).
[CrossRef]

W. Y. Wang, C. Wang, K. Wen, and G. L. Long, “Quantum key distribution network based on differential phase shift,” Chin. Phys. Lett. 24, 1463-1466 (2007).
[CrossRef]

Y. Xia and H. S. Song, “Controlled quantum secure direct communication using a noN-symmetric quantum channel with quantum superdense coding,” Phys. Lett. A 364, 117-122 (2007).
[CrossRef]

2006

Y. Yeo and W. K. Chua, “Teleportation and dense coding with genuine multipartite entanglement,” Phys. Rev. Lett. 96, 060502 (2006).
[CrossRef] [PubMed]

G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
[CrossRef]

G. Gordon and G. Rigolin, “Generalized quantum-state sharing,” Phys. Rev. A 73, 062316 (2006).
[CrossRef]

2005

G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
[CrossRef]

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle GreeN-Horne-Zeilinger state,” Opt. Commun. 253, 15-20 (2005).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with EinsteiN-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388-392 (2005).

2004

H. Kim, Y. W. Cheong, and H. W. Lee, “Generalized measurement and conclusive teleportation with nonmaximal entanglement,” Phys. Rev. A 70, 012309 (2004).
[CrossRef]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef] [PubMed]

2002

D. F. V. James and P. G. Kwiat, “Atomic-vapor-based high efficiency optical detectors with photon number resolution,” Phys. Rev. Lett. 89, 183601 (2002).
[CrossRef] [PubMed]

P. Agrawal and A. K. Pati, “Probabilistic quantum teleportation,” Phys. Lett. A 305, 12-17 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

B. Zeng and P. Zhang, “Remote-state preparation in higher dimension and the parallelizable manifold Sn−1,” Phys. Rev. A 65, 022316 (2002).
[CrossRef]

B. Zeng, X. S. Liu, Y. S. Li, and G. L. Long, “High-dimensional multi-particle cat-like state teleportation,” Commun. Theor. Phys. 38, 537-540 (2002).

J. Lee, H. Min, and S. D. Oh, “Multipartite entanglement for entanglement teleportation,” Phys. Rev. A 66, 052318 (2002).
[CrossRef]

2001

J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001).
[CrossRef]

G. L. Long and Y. Sun, “Efficient scheme for initializing a quantum register with an arbitrary superposed state,” Phys. Rev. A 64, 014303 (2001).
[CrossRef]

J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435 (2001).
[CrossRef] [PubMed]

2000

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000).
[CrossRef] [PubMed]

H. W. Lee and J. Kim, “Quantum teleportation and Bells inequality using single-particle entanglement,” Phys. Rev. A 63, 012305 (2000).
[CrossRef]

1999

J. Kim, S. Takeuchi, and Y. Yamamoto, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

1998

D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998).
[CrossRef]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869-872 (1998).
[CrossRef]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394-4400 (1998).
[CrossRef]

1997

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

1996

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996).
[CrossRef] [PubMed]

1994

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473-1476 (1994).
[CrossRef] [PubMed]

1993

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993).
[CrossRef] [PubMed]

Agrawal, P.

P. Agrawal and A. K. Pati, “Probabilistic quantum teleportation,” Phys. Lett. A 305, 12-17 (2002).
[CrossRef]

Bacon, D.

J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993).
[CrossRef] [PubMed]

Bernu, J.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

Boschi, D.

D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998).
[CrossRef]

Bourennane, M.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef] [PubMed]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394-4400 (1998).
[CrossRef]

Bouwmeester, D.

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Branca, S.

D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993).
[CrossRef] [PubMed]

Braunstein, S. L.

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869-872 (1998).
[CrossRef]

Brune, M.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

Chen, S.

S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007).
[CrossRef] [PubMed]

Chen, Y. A.

S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007).
[CrossRef] [PubMed]

Cheong, Y. W.

H. Kim, Y. W. Cheong, and H. W. Lee, “Generalized measurement and conclusive teleportation with nonmaximal entanglement,” Phys. Rev. A 70, 012309 (2004).
[CrossRef]

Chua, W. K.

Y. Yeo and W. K. Chua, “Teleportation and dense coding with genuine multipartite entanglement,” Phys. Rev. Lett. 96, 060502 (2006).
[CrossRef] [PubMed]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993).
[CrossRef] [PubMed]

Daniell, M.

J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435 (2001).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000).
[CrossRef] [PubMed]

Deléglise, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

DeMartini, F.

D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998).
[CrossRef]

Deng, F. G.

P. Zhou, X. H. Li, F. G. Deng, and H. Y. Zhou, “Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing,” Chin. Phys. 16, 2867-2874 (2007).
[CrossRef]

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle GreeN-Horne-Zeilinger state,” Opt. Commun. 253, 15-20 (2005).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with EinsteiN-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Eibl, M.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Fu, C. B.

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388-392 (2005).

Gasparoni, S.

J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435 (2001).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Gleyzes, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

Gordon, G.

G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
[CrossRef]

G. Gordon and G. Rigolin, “Generalized quantum-state sharing,” Phys. Rev. A 73, 062316 (2006).
[CrossRef]

Guerlin, C.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

Hardy, L.

D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998).
[CrossRef]

Haroche, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

Hoff, U. B.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

James, D. F. V.

D. F. V. James and P. G. Kwiat, “Atomic-vapor-based high efficiency optical detectors with photon number resolution,” Phys. Rev. Lett. 89, 183601 (2002).
[CrossRef] [PubMed]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993).
[CrossRef] [PubMed]

Karlsson, A.

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394-4400 (1998).
[CrossRef]

Kempe, J.

J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001).
[CrossRef]

Kiesel, N.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef] [PubMed]

Kim, H.

H. Kim, Y. W. Cheong, and H. W. Lee, “Generalized measurement and conclusive teleportation with nonmaximal entanglement,” Phys. Rev. A 70, 012309 (2004).
[CrossRef]

Kim, J.

H. W. Lee and J. Kim, “Quantum teleportation and Bells inequality using single-particle entanglement,” Phys. Rev. A 63, 012305 (2000).
[CrossRef]

J. Kim, S. Takeuchi, and Y. Yamamoto, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

Kimble, H. J.

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869-872 (1998).
[CrossRef]

Kuhr, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

Kurtsiefer, C.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef] [PubMed]

Kwiat, P. G.

D. F. V. James and P. G. Kwiat, “Atomic-vapor-based high efficiency optical detectors with photon number resolution,” Phys. Rev. Lett. 89, 183601 (2002).
[CrossRef] [PubMed]

Lee, H. W.

H. Kim, Y. W. Cheong, and H. W. Lee, “Generalized measurement and conclusive teleportation with nonmaximal entanglement,” Phys. Rev. A 70, 012309 (2004).
[CrossRef]

H. W. Lee and J. Kim, “Quantum teleportation and Bells inequality using single-particle entanglement,” Phys. Rev. A 63, 012305 (2000).
[CrossRef]

Lee, J.

J. Lee, H. Min, and S. D. Oh, “Multipartite entanglement for entanglement teleportation,” Phys. Rev. A 66, 052318 (2002).
[CrossRef]

Li, C. Y.

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with EinsteiN-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Li, X. H.

P. Zhou, X. H. Li, F. G. Deng, and H. Y. Zhou, “Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing,” Chin. Phys. 16, 2867-2874 (2007).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with EinsteiN-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Li, Y. S.

B. Zeng, X. S. Liu, Y. S. Li, and G. L. Long, “High-dimensional multi-particle cat-like state teleportation,” Commun. Theor. Phys. 38, 537-540 (2002).

Lidar, D. A.

J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001).
[CrossRef]

Liu, X. S.

B. Zeng, X. S. Liu, Y. S. Li, and G. L. Long, “High-dimensional multi-particle cat-like state teleportation,” Commun. Theor. Phys. 38, 537-540 (2002).

Long, G. L.

W. Y. Wang, C. Wang, K. Wen, and G. L. Long, “Quantum key distribution network based on differential phase shift,” Chin. Phys. Lett. 24, 1463-1466 (2007).
[CrossRef]

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle GreeN-Horne-Zeilinger state,” Opt. Commun. 253, 15-20 (2005).
[CrossRef]

B. Zeng, X. S. Liu, Y. S. Li, and G. L. Long, “High-dimensional multi-particle cat-like state teleportation,” Commun. Theor. Phys. 38, 537-540 (2002).

G. L. Long and Y. Sun, “Efficient scheme for initializing a quantum register with an arbitrary superposed state,” Phys. Rev. A 64, 014303 (2001).
[CrossRef]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Min, H.

J. Lee, H. Min, and S. D. Oh, “Multipartite entanglement for entanglement teleportation,” Phys. Rev. A 66, 052318 (2002).
[CrossRef]

Oh, S. D.

J. Lee, H. Min, and S. D. Oh, “Multipartite entanglement for entanglement teleportation,” Phys. Rev. A 66, 052318 (2002).
[CrossRef]

Pan, J. W.

S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007).
[CrossRef] [PubMed]

J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435 (2001).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Pati, A. K.

P. Agrawal and A. K. Pati, “Probabilistic quantum teleportation,” Phys. Lett. A 305, 12-17 (2002).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993).
[CrossRef] [PubMed]

Popescu, S.

D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998).
[CrossRef]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996).
[CrossRef] [PubMed]

Raimond, J. M.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Rigolin, G.

G. Gordon and G. Rigolin, “Generalized quantum-state sharing,” Phys. Rev. A 73, 062316 (2006).
[CrossRef]

G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
[CrossRef]

G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
[CrossRef]

Schmiedmayer, J.

S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007).
[CrossRef] [PubMed]

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996).
[CrossRef] [PubMed]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996).
[CrossRef] [PubMed]

Song, H. S.

Y. Xia, J. Song, H. S. Song, and S. Zhang, “Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors,” J. Opt. Soc. Am. B 26, 129-132 (2009).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Y. Xia and H. S. Song, “Controlled quantum secure direct communication using a noN-symmetric quantum channel with quantum superdense coding,” Phys. Lett. A 364, 117-122 (2007).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Re-examining generalized teleportation protocol,” Opt. Commun. 279, 395-398 (2007).
[CrossRef]

Song, J.

Y. Xia, J. Song, H. S. Song, and S. Zhang, “Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors,” J. Opt. Soc. Am. B 26, 129-132 (2009).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Re-examining generalized teleportation protocol,” Opt. Commun. 279, 395-398 (2007).
[CrossRef]

Sun, Y.

G. L. Long and Y. Sun, “Efficient scheme for initializing a quantum register with an arbitrary superposed state,” Phys. Rev. A 64, 014303 (2001).
[CrossRef]

Takeuchi, S.

J. Kim, S. Takeuchi, and Y. Yamamoto, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Um, C. I.

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388-392 (2005).

Vaidman, L.

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473-1476 (1994).
[CrossRef] [PubMed]

Wang, C.

W. Y. Wang, C. Wang, K. Wen, and G. L. Long, “Quantum key distribution network based on differential phase shift,” Chin. Phys. Lett. 24, 1463-1466 (2007).
[CrossRef]

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle GreeN-Horne-Zeilinger state,” Opt. Commun. 253, 15-20 (2005).
[CrossRef]

Wang, W. Y.

W. Y. Wang, C. Wang, K. Wen, and G. L. Long, “Quantum key distribution network based on differential phase shift,” Chin. Phys. Lett. 24, 1463-1466 (2007).
[CrossRef]

Weihs, G.

J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435 (2001).
[CrossRef] [PubMed]

Weinfurter, H.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Wen, K.

W. Y. Wang, C. Wang, K. Wen, and G. L. Long, “Quantum key distribution network based on differential phase shift,” Chin. Phys. Lett. 24, 1463-1466 (2007).
[CrossRef]

Whaley, K. B.

J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993).
[CrossRef] [PubMed]

Xia, Y.

Y. Xia, J. Song, H. S. Song, and S. Zhang, “Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors,” J. Opt. Soc. Am. B 26, 129-132 (2009).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Y. Xia and H. S. Song, “Controlled quantum secure direct communication using a noN-symmetric quantum channel with quantum superdense coding,” Phys. Lett. A 364, 117-122 (2007).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Re-examining generalized teleportation protocol,” Opt. Commun. 279, 395-398 (2007).
[CrossRef]

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388-392 (2005).

Yamamoto, Y.

J. Kim, S. Takeuchi, and Y. Yamamoto, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

Yeo, Y.

Y. Yeo and W. K. Chua, “Teleportation and dense coding with genuine multipartite entanglement,” Phys. Rev. Lett. 96, 060502 (2006).
[CrossRef] [PubMed]

Yeon, K. H.

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388-392 (2005).

Yuan, Z.-S.

S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007).
[CrossRef] [PubMed]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Zeilinger, A.

J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435 (2001).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Zeng, B.

B. Zeng, X. S. Liu, Y. S. Li, and G. L. Long, “High-dimensional multi-particle cat-like state teleportation,” Commun. Theor. Phys. 38, 537-540 (2002).

B. Zeng and P. Zhang, “Remote-state preparation in higher dimension and the parallelizable manifold Sn−1,” Phys. Rev. A 65, 022316 (2002).
[CrossRef]

Zhang, P.

B. Zeng and P. Zhang, “Remote-state preparation in higher dimension and the parallelizable manifold Sn−1,” Phys. Rev. A 65, 022316 (2002).
[CrossRef]

Zhang, S.

Y. Xia, J. Song, H. S. Song, and S. Zhang, “Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors,” J. Opt. Soc. Am. B 26, 129-132 (2009).
[CrossRef]

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388-392 (2005).

Zhao, B.

S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007).
[CrossRef] [PubMed]

Zhou, H. Y.

P. Zhou, X. H. Li, F. G. Deng, and H. Y. Zhou, “Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing,” Chin. Phys. 16, 2867-2874 (2007).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with EinsteiN-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Zhou, P.

P. Zhou, X. H. Li, F. G. Deng, and H. Y. Zhou, “Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing,” Chin. Phys. 16, 2867-2874 (2007).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with EinsteiN-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Appl. Phys. Lett.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

J. Kim, S. Takeuchi, and Y. Yamamoto, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74, 902-904 (1999).
[CrossRef]

Chin. Phys.

P. Zhou, X. H. Li, F. G. Deng, and H. Y. Zhou, “Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing,” Chin. Phys. 16, 2867-2874 (2007).
[CrossRef]

Chin. Phys. Lett.

W. Y. Wang, C. Wang, K. Wen, and G. L. Long, “Quantum key distribution network based on differential phase shift,” Chin. Phys. Lett. 24, 1463-1466 (2007).
[CrossRef]

Commun. Theor. Phys.

B. Zeng, X. S. Liu, Y. S. Li, and G. L. Long, “High-dimensional multi-particle cat-like state teleportation,” Commun. Theor. Phys. 38, 537-540 (2002).

J. Korean Phys. Soc.

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388-392 (2005).

J. Opt. Soc. Am. B

Nature

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Opt. Commun.

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle GreeN-Horne-Zeilinger state,” Opt. Commun. 253, 15-20 (2005).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Re-examining generalized teleportation protocol,” Opt. Commun. 279, 395-398 (2007).
[CrossRef]

Phys. Lett. A

P. Agrawal and A. K. Pati, “Probabilistic quantum teleportation,” Phys. Lett. A 305, 12-17 (2002).
[CrossRef]

Y. Xia and H. S. Song, “Controlled quantum secure direct communication using a noN-symmetric quantum channel with quantum superdense coding,” Phys. Lett. A 364, 117-122 (2007).
[CrossRef]

Phys. Rev. A

B. Zeng and P. Zhang, “Remote-state preparation in higher dimension and the parallelizable manifold Sn−1,” Phys. Rev. A 65, 022316 (2002).
[CrossRef]

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473-1476 (1994).
[CrossRef] [PubMed]

H. W. Lee and J. Kim, “Quantum teleportation and Bells inequality using single-particle entanglement,” Phys. Rev. A 63, 012305 (2000).
[CrossRef]

G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
[CrossRef]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394-4400 (1998).
[CrossRef]

J. Lee, H. Min, and S. D. Oh, “Multipartite entanglement for entanglement teleportation,” Phys. Rev. A 66, 052318 (2002).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with EinsteiN-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
[CrossRef]

G. Gordon and G. Rigolin, “Generalized quantum-state sharing,” Phys. Rev. A 73, 062316 (2006).
[CrossRef]

H. Kim, Y. W. Cheong, and H. W. Lee, “Generalized measurement and conclusive teleportation with nonmaximal entanglement,” Phys. Rev. A 70, 012309 (2004).
[CrossRef]

J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001).
[CrossRef]

G. L. Long and Y. Sun, “Efficient scheme for initializing a quantum register with an arbitrary superposed state,” Phys. Rev. A 64, 014303 (2001).
[CrossRef]

Phys. Rev. Lett.

S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007).
[CrossRef] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef] [PubMed]

D. F. V. James and P. G. Kwiat, “Atomic-vapor-based high efficiency optical detectors with photon number resolution,” Phys. Rev. Lett. 89, 183601 (2002).
[CrossRef] [PubMed]

J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435 (2001).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993).
[CrossRef] [PubMed]

D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998).
[CrossRef]

Y. Yeo and W. K. Chua, “Teleportation and dense coding with genuine multipartite entanglement,” Phys. Rev. Lett. 96, 060502 (2006).
[CrossRef] [PubMed]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869-872 (1998).
[CrossRef]

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Other

An example that transforms |0000⟩ to (1/2)(|0000⟩+|1111⟩) is given in Fig. in . The protocol involves only two kinds of operations: a Hadamard transformation plays on the first qubit and three controlled-Not gates play on the last three qubits, respectively. In the last qubit, the rotation is either π/2 for (1/2)(|0000⟩+|1111⟩) or −π/2(1/2)(|0000⟩−|1111⟩).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Linear optical scheme for a quantum teleportation. D E 1 , D E 2 , D F 1 , D F 1 , D 1 , and D 2 are detectors, PBS 1 , PBS 2 , PBS 3 , PBS 1 , and PBS are polarizing beam splitters, BS 1 is a 50 50 beam splitter, and BS 2 is a beam splitter of transmission coefficient t = tan η . HWP is a half-wave plate. P 1 is a π 2 -phase shifter.

Fig. 2
Fig. 2

Schemeatic demonstration for reconstructing the N-photon GHZ polarization-entangled state.

Fig. 3
Fig. 3

Total success probability P vs. η, κ, and N ( N = 1 , 2 , 3 , 4 ) .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

| ϕ 12 N = α | H H H 12 N + β | V V V 12 N ,
| Ψ A B = cos η | V H A B sin η | H V A B .
| Φ 12 N A B = | ϕ 12 N | Ψ A B .
| Φ E F Y B 23 N = 1 2 { [ sin η ( | V E | H F | H F | V E ) | 0 Y + cos 2 η 2 ( | H E | 0 f + | 0 E | H F ) | 1 Y ] × ( α | H H H H B 23 N + β | V V V V B 23 N ) [ sin η ( | V H E | 0 F | 0 E | V H F ) | 0 Y + cos 2 η 2 ( | H E | 0 F + | 0 E | H F ) | 1 Y ] ( α | H H H H B 23 N β | V V V V B 23 N ) } + { 2 2 [ | V V E | 0 F | 0 E | V V F | H H E | 0 F + | 0 E | H H F ] | 0 Y + cos 2 η 2 ( | V E | 0 F + | 0 E | V F ) | V Y } ( α | H H H H B 23 N + β | V V V V B 23 N ) + { 1 2 [ | V V E | 0 F | 0 E | V V F + | H H E | 0 F | 0 E | H H F ] | 0 Y + cos 2 η 2 ( | V E | 0 F + | 0 E | V F ) | V Y } × ( α | H H H H B 23 N + β | V V V V B 23 N ) ,
| Φ 2 a B 34 N = | H a ( α | H H H H B 34 N + β | V V V V B 34 N ) + | V a ( α | H H H H B 34 N β | V V V V B 34 N ) .
| Φ 2 12 B 34 N = | H 1 ( α | H H H H B 34 N + β | V V V V B 34 N ) + | V 2 ( α | H H H H B 34 N β | V V V V B 34 N ) .
V 23 N = V 2 V 3 V N ,
| Φ B = α | 0 B + β | 1 B .
| Φ b 1 b N 1 = | H H H b 1 b N 1 ( 1 2 ) N 1 ( | H + | V ) b 1 ( | H + | V ) b N 1 .
| Φ B b 1 b N 1 = ( 1 2 ) N 1 ( α | H + β | V ) B ( | H + | V ) b 1 ( | H + | V ) b N 1 ( N 1 ) P B S ( 1 2 ) N 1 [ ( α | H M 2 | H M 1 + α | H M 2 | V M 2 + β | V M 1 | H M 1 + β | V M 1 | V M 2 ) B b 1 ( | H M N 1 + | V M N ) b N 1 ] .
| Φ B b 1 b N 1 = ( 1 2 ) N 1 [ α | H M 1 | H M 2 | H M N + β | V M 1 | V M 2 | V M N ] B b 1 b N 1 ,
P = κ ( 50 % ) N 1 sin 2 η .

Metrics