Abstract

We study numerically a group of asymmetric open cavities located at the exit of a photonic crystal waveguide. High angular confinement and deflection of the photonic beam are detected with zero side lobes. We further demonstrate, for the first time to our knowledge, the potential application of generalized open cavities in realizing optical switches/modulators with beam deflection. Finally, the frequency-domain response of the device is investigated and high bandwidth operation can be realized to cover some of the most commonly used transmission windows in the optical-fiber-communication regime.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  2. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef] [PubMed]
  3. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ∼1.6-μm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002).
    [CrossRef]
  4. E. Moreno, F. J. G. Vidal, and L. M. Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
    [CrossRef]
  5. S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
    [CrossRef]
  6. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
    [CrossRef]
  7. C. C. Chen, T. Pertsch, F. Lederer, and A. Tunnnermann, “Directional emission from photonic crystal waveguides,” Opt. Express 14, 2423–2428 (2006).
    [CrossRef] [PubMed]
  8. H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exit,” IEEE Photonics Technol. Lett. 20, 1682–1684 (2008).
    [CrossRef]
  9. E. Colak, H. Caglayan, A. O. Cakmak, A. D. Villa, F. Capolino, and E. Ozbay, “Frequency dependent steering with backward leaky waves via photonic crystal interface layer,” Opt. Express 17, 9879–9890 (2009).
    [CrossRef] [PubMed]
  10. A. Sugitatsu, T. Asano, and S. Noda, “Line defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005).
    [CrossRef]
  11. D. T. Neilson, R. Frahm, P. Kolodner, C. A. Bolle, R. Ryf, J. Kim, A. R. Papazian, C. J. Nuzman, A. Gasparyan, N. R. Basavanhally, V. A. Aksyuk, and J. V. Gates, “256×256 port optical cross-connect subsystem,” J. Lightwave Technol. 22, 1499–1509 (2004).
    [CrossRef]
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
    [CrossRef]
  13. T. Baba, T. Matsumoto, and M. Echizen, “Finite difference time domain study of high efficiency photonic crystal superprisms,” Opt. Express 12, 4608–4613 (2004).
    [CrossRef] [PubMed]
  14. K. Guven and E. Ozbay, “Directivity enhancement and deflection of the beam emitted from a photonic crystal waveguide via defect coupling,” Opt. Express 15, 14973–14978 (2007).
    [CrossRef] [PubMed]
  15. S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008).
    [CrossRef]
  16. N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
    [CrossRef] [PubMed]
  17. K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. 24, 397–405 (1982).
    [CrossRef]
  18. M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Theoretical study of a cross waveguide resonator-based silicon electro-optic modulator with low power consumption,” J. Opt. Soc. Am. B 26, 2176–2180 (2009).
    [CrossRef]
  19. G. Cocorullo, M. Iodice, and I. Rendina, “All-silicon Fabry–Perot modulator based on the thermo-optic effect,” Opt. Lett. 19, 420–422 (1994).
    [PubMed]
  20. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]

2009

2008

H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exit,” IEEE Photonics Technol. Lett. 20, 1682–1684 (2008).
[CrossRef]

S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

2007

2006

2005

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

A. Sugitatsu, T. Asano, and S. Noda, “Line defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005).
[CrossRef]

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

2004

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

E. Moreno, F. J. G. Vidal, and L. M. Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

D. T. Neilson, R. Frahm, P. Kolodner, C. A. Bolle, R. Ryf, J. Kim, A. R. Papazian, C. J. Nuzman, A. Gasparyan, N. R. Basavanhally, V. A. Aksyuk, and J. V. Gates, “256×256 port optical cross-connect subsystem,” J. Lightwave Technol. 22, 1499–1509 (2004).
[CrossRef]

T. Baba, T. Matsumoto, and M. Echizen, “Finite difference time domain study of high efficiency photonic crystal superprisms,” Opt. Express 12, 4608–4613 (2004).
[CrossRef] [PubMed]

2002

1999

1996

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

1994

1982

K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. 24, 397–405 (1982).
[CrossRef]

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

Aksyuk, V. A.

Asano, T.

A. Sugitatsu, T. Asano, and S. Noda, “Line defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005).
[CrossRef]

Baba, T.

Basavanhally, N. R.

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Bolle, C. A.

Bur, J.

Bur, J. A.

S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008).
[CrossRef]

Caglayan, H.

Cakmak, A. O.

Capolino, F.

Chen, C. C.

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Chen, M.

S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008).
[CrossRef]

Chow, E.

Cluzel, B.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Cocorullo, G.

Colak, E.

Danner, A. J.

de Fornel, F.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Echizen, M.

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fabre, N.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Frahm, R.

Gasparyan, A.

Gates, J. V.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Gosele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

Guven, K.

Iodice, M.

Joannopoulos, J. D.

S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ∼1.6-μm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Johnson, S. G.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kawakami, S.

Kawashima, T.

Kim, J.

Kivshar, Y. S.

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Kolodner, P.

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kosaka, H.

Kosowsky, L. H.

S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008).
[CrossRef]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Kurt, H.

H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exit,” IEEE Photonics Technol. Lett. 20, 1682–1684 (2008).
[CrossRef]

Lalouat, L.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Lederer, F.

Levitan, A.

S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008).
[CrossRef]

Lim, S. T.

Lin, S. Y.

S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008).
[CrossRef]

S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ∼1.6-μm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002).
[CrossRef]

Lippens, D.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Matsumoto, T.

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Melique, X.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Moreno, E.

E. Moreno, F. J. G. Vidal, and L. M. Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Moreno, L. M.

E. Moreno, F. J. G. Vidal, and L. M. Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Morrison, S. K.

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Muller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

Neilson, D. T.

Noda, S.

A. Sugitatsu, T. Asano, and S. Noda, “Line defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
[CrossRef]

Nuzman, C. J.

Ozbay, E.

Papazian, A. R.

Pertsch, T.

Png, C. E.

Rendina, I.

Ryf, R.

Sandoghdar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

Sato, T.

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Soukoulis, C. M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

Sugitatsu, A.

A. Sugitatsu, T. Asano, and S. Noda, “Line defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005).
[CrossRef]

Taflove, A.

K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. 24, 397–405 (1982).
[CrossRef]

Tamamura, T.

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Tomita, A.

Tunnnermann, A.

Umashankar, K.

K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. 24, 397–405 (1982).
[CrossRef]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Vanbesien, O.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Vidal, F. J. G.

E. Moreno, F. J. G. Vidal, and L. M. Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Villa, A. D.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

Xin, M.

Yang, Z. P.

S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008).
[CrossRef]

Appl. Phys. Lett.

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

A. Sugitatsu, T. Asano, and S. Noda, “Line defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005).
[CrossRef]

S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

IEEE Photonics Technol. Lett.

H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exit,” IEEE Photonics Technol. Lett. 20, 1682–1684 (2008).
[CrossRef]

IEEE Trans. Electromagn. Compat.

K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. 24, 397–405 (1982).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. B

E. Moreno, F. J. G. Vidal, and L. M. Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Phys. Rev. Lett.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

2D schematic of the W1 PCW with a rectangular open cavity located to the left side of the waveguide exit. The cavity (gray matrix) is made by removing the silicon rods within the rectangular area.

Fig. 2
Fig. 2

Steady-state normalized E y profile of the optical mode leaving the PCW with open cavities of different dimensions: (a) symmetric tapering structure studied in [8]; (b) square open cavity with i = j = 7 ; (c) square open cavity with i = j = 2 ; (d) rectangular open cavity with i = 8 and j = 4 .

Fig. 3
Fig. 3

Angular resolved near-field (normalized intensity) distribution of the optical mode leaving the PCW with different exit shapes: (a) highly directional and deflective emission is detected with the asymmetric square cavity in comparison to the symmetric tapering and perfect PCW without any tapering; (b) asymmetric cavities with different geometric shapes are studied and wide angle deflection is detected in the trapezoid cavity with significantly suppressed side lobes.

Fig. 4
Fig. 4

Time-averaged field (normalized intensity) profile of the optical mode coupling into free space from the PCW with (a) triangular cavity and (b) trapezoid cavity. The side lobes can be suppressed in both cases.

Fig. 5
Fig. 5

Angular resolved far-field (normalized intensity) distribution corresponding to the near-field profile in Fig. 3: (a) rectangular cavity compared to symmetric tapering and perfect PCW; (b) cavities with different geometric shapes. A reduction in directivity and deflection angle is observed in the evolution of far-field emission.

Fig. 6
Fig. 6

2D schematic of the PCW with a generalized open cavity. The generalized cavity is made by replacing the original lattice (PC1) with a new lattice (PC2) within the dashed area.

Fig. 7
Fig. 7

Switching characteristic of the trapezoid generalized cavity: (a) statically, far-field emission pattern changes abruptly with misaligned main lobe emission angle and amplitude when r 2 r 1 increases from 0.5 to 0.6; (b) dynamically, significant far-field contrast can be obtained by introducing RI perturbation to the PC2 when r 2 r 1 is kept at 0.6.

Fig. 8
Fig. 8

Normalized radiation graph of the PCW with trapezoid open cavities: (a) near-field intensity distribution. Multiple transmission maxima are detected and can be aligned to cover some commonly used optical communication bands; (b) far-field intensity distribution. Similar transmission maxima are confirmed with central wavelength aligned to their near-field equivalence

Metrics