J. M. Soto-Crespo, N. Akhmediev, C. Mejía-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17, 4236–4250 (2009).

[Crossref]
[PubMed]

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[Crossref]

H. Sakaguchi, “Splitting instability of cellular structures in the Ginzburg–Landau model under feedback control,” Phys. Rev. E 80, 017202 (2009).

[Crossref]

R. Yang and X. Wu, “Spatial soliton tunneling, compression and splitting,” Opt. Express 16, 17759–17767 (2008).

[Crossref]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg–Landau equation,” Phys. Rev. A 77, 033817 (2008).

[Crossref]

J. Holmer, J. Marzuola, and M. Zworski, “Soliton splitting by external delta potentials,” J. Nonlinear Sci. 17, 349–367 (2007).

[Crossref]

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005) pp. 157–160; B. A. MalomedChaos 17, 037117 (2007).

[Crossref]

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005) pp. 157–160; B. A. MalomedChaos 17, 037117 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[Crossref]
[PubMed]

A. Fratalocchi and G. Assanto, “Governing soliton splitting in one-dimensional lattices,” Phys. Rev. E 73, 046603 (2006).

[Crossref]

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Top. Quantum Electron. 6, 1419–1427 (2000).

[Crossref]

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997).

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997).

A. Fratalocchi and G. Assanto, “Governing soliton splitting in one-dimensional lattices,” Phys. Rev. E 73, 046603 (2006).

[Crossref]

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Top. Quantum Electron. 6, 1419–1427 (2000).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[Crossref]
[PubMed]

W. J. Firth, in Self-Organization in Optical Systems and Applications in Information Technology, M.A.Vorontsov and W.B.Miller, eds. (Springer-Verlag, 1995), p. 69.

[Crossref]

A. Fratalocchi and G. Assanto, “Governing soliton splitting in one-dimensional lattices,” Phys. Rev. E 73, 046603 (2006).

[Crossref]

J. Holmer, J. Marzuola, and M. Zworski, “Soliton splitting by external delta potentials,” J. Nonlinear Sci. 17, 349–367 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[Crossref]
[PubMed]

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg–Landau equation,” Phys. Rev. A 77, 033817 (2008).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg–Landau equation,” Phys. Rev. A 77, 033817 (2008).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[Crossref]
[PubMed]

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg–Landau equation,” Phys. Rev. A 77, 033817 (2008).

[Crossref]

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005) pp. 157–160; B. A. MalomedChaos 17, 037117 (2007).

[Crossref]

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005) pp. 157–160; B. A. MalomedChaos 17, 037117 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[Crossref]
[PubMed]

J. Holmer, J. Marzuola, and M. Zworski, “Soliton splitting by external delta potentials,” J. Nonlinear Sci. 17, 349–367 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg–Landau equation,” Phys. Rev. A 77, 033817 (2008).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[Crossref]
[PubMed]

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg–Landau equation,” Phys. Rev. A 77, 033817 (2008).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[Crossref]
[PubMed]

H. Sakaguchi, “Splitting instability of cellular structures in the Ginzburg–Landau model under feedback control,” Phys. Rev. E 80, 017202 (2009).

[Crossref]

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Top. Quantum Electron. 6, 1419–1427 (2000).

[Crossref]

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Top. Quantum Electron. 6, 1419–1427 (2000).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[Crossref]
[PubMed]

J. Holmer, J. Marzuola, and M. Zworski, “Soliton splitting by external delta potentials,” J. Nonlinear Sci. 17, 349–367 (2007).

[Crossref]

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005) pp. 157–160; B. A. MalomedChaos 17, 037117 (2007).

[Crossref]

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Top. Quantum Electron. 6, 1419–1427 (2000).

[Crossref]

J. Holmer, J. Marzuola, and M. Zworski, “Soliton splitting by external delta potentials,” J. Nonlinear Sci. 17, 349–367 (2007).

[Crossref]

R. Yang and X. Wu, “Spatial soliton tunneling, compression and splitting,” Opt. Express 16, 17759–17767 (2008).

[Crossref]
[PubMed]

J. M. Soto-Crespo, N. Akhmediev, C. Mejía-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17, 4236–4250 (2009).

[Crossref]
[PubMed]

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg–Landau equation,” Phys. Rev. A 77, 033817 (2008).

[Crossref]

H. Sakaguchi, “Splitting instability of cellular structures in the Ginzburg–Landau model under feedback control,” Phys. Rev. E 80, 017202 (2009).

[Crossref]

A. Fratalocchi and G. Assanto, “Governing soliton splitting in one-dimensional lattices,” Phys. Rev. E 73, 046603 (2006).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[Crossref]
[PubMed]

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997).

W. J. Firth, in Self-Organization in Optical Systems and Applications in Information Technology, M.A.Vorontsov and W.B.Miller, eds. (Springer-Verlag, 1995), p. 69.

[Crossref]