Abstract

The Nd3+Yb3+ energy transfer spectral characteristics in (Nd,Yb):Y2O3 ceramics and the relevant spectral and emission decay data on single-doped (especially temperature effects) and codoped samples are presented. The transfer efficiencies depend strongly on Yb3+ content, attaining 98% for Nd1at.%Yb5at.% at 300K. The resonant Nd3+Yb3+ energy transfer (F324(Nd),F722(Yb))(I924(Nd),F522(Yb)), involving Nd3+ in C2 sites and Yb3+ in C2 and C3i sites, is dominated by a dipole–dipole interaction with a microparameter CDA,NdYb1×1038cm6s1 at 300K. The possibility of using this system for Nd-sensitized Yb3+ laser emission from room-to-cryogenic temperatures is discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Petersen and P. M. Bridenbaugh, “Application of resonance cooperation of rare earth ions Nd3+ and Yb3+ to lasers (Na0.5RE0.5WO4),” Appl. Phys. Lett. 4, 201–202 (1964).
    [CrossRef]
  2. U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
    [CrossRef]
  3. Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
    [CrossRef]
  4. V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
    [CrossRef]
  5. N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995).
    [CrossRef]
  6. V. Petit, P. Camy, J.-L. Doualan, and R. Moncorge, “Continuous-wave and tunable laser emission of Yb3+ in Nd:YbCaF2,” Appl. Phys. Lett. 88, 051111 (2006).
    [CrossRef]
  7. E. A. Khazanov and A. M. Sergeev, “Petawatt lasers based on optical parametric amplifiers: their state and prospects,” Physics-Uspekhi 51, 969–974 (2008).
    [CrossRef]
  8. A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of transparent Nd-doped HfO2–Y2O3 ceramics using HIP,” J. Am. Ceram. Soc. 79, 359–364 (1996).
    [CrossRef]
  9. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
    [CrossRef]
  10. V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb) -doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86, 111118 (2005).
    [CrossRef]
  11. V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high energy Yb lasers,” Opt. Lett. 34, 2141–2143 (2009).
    [CrossRef] [PubMed]
  12. N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels and crystal field analysis of tripositive rare earth ions in Y2O3. I Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
    [CrossRef]
  13. K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
    [CrossRef]
  14. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides crystal growth, spectroscopy and laser experiments,” Opt. Mater. 19, 67–71 (2002).
    [CrossRef]
  15. L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mater. 16, 475–483 (2001).
    [CrossRef]
  16. G. Boulon and V. Lupei, “Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals,” J. Lumin. 125, 45–54 (2007).
    [CrossRef]
  17. L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861 (2008).
    [CrossRef]
  18. A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, “Electron-phonon coupling effects on Yb3+ spectra in several laser crystals,” J. Phys. Condens. Matter 11, 3769–3778 (1999).
    [CrossRef]
  19. A. Lupei, V. Lupei, V. N. Enaki, C. Presura, and A. Petraru, “Electron-photon coupling for heavy RE3+ ions in crystals,” Spectrochim. Acta 55, 773–781 (1999).
    [CrossRef]
  20. G. Schnaack and J. Konigstein, “Phonon and electronic Raman of cubic rare earth oxides and isomorphous yttrium oxide,” J. Opt. Soc. Am. 60, 1110–1115 (1970).
    [CrossRef]
  21. V. Peters, “Growth and spectroscopy of ytterbium-doped sesquioxides,” Dissertation thesis, (Universität Hamburg, 2001).
  22. A. Lupei, V. Lupei, T. Taira, Y. Sato, A. Ikesue, and C. Gheorghe, “Energy transfer processes of Nd in Y2O3 ceramic,” J. Lumin. 102/103, 72–76 (2003).
    [CrossRef]
  23. J. B. Gruber, D. K. Sardar, K. L. Nash, and R. M. Yow, “Comparative study of the crystal field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide,” J. Appl. Phys. 102, 023103 (2007).
    [CrossRef]
  24. B. M. Walsh, J. M. McMahon, W. C. Edwards, N. P. Barnes, R. W. Equal, and R. L. Hutchinson, “Spectroscopic characterization of Nd: Y2O3: application toward a differential absorption lidar system for remote sensing of ozone,” J. Opt. Soc. Am. B 19, 2893–2903 (2002).
    [CrossRef]
  25. S. N. Ushakov, M. A. Uslamina, and E. V. Zharikov, “Spectral properties of Nd3+ ions in samples of transparent Y2O3 ceramics,” Opt. Spectrosc. 106, 549–555 (2009).
    [CrossRef]
  26. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  27. G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
    [CrossRef]
  28. G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
    [CrossRef]
  29. M. J. Weber, “Optical properties of Yb3+ and Nd3+–Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
    [CrossRef]
  30. V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Energy transfer driven infrared emission processes in rare earth doped Sc2O3 ceramics,” J. Lumin. 129, 1862–1865 (2009).
    [CrossRef]
  31. A. I. Burnstein, “Jump mechanism of energy transfer,” Sov. Phys. JETP 35, 882–891 (1972).
  32. S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).
  33. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on the donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
    [CrossRef]
  34. V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd: YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
    [CrossRef]
  35. D. Jaque, M. O. Ramírez, L. E. Bausa, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd and Yb concentration on the Nd→Yb energy transfer in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentrations for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
    [CrossRef]

2009 (5)

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

S. N. Ushakov, M. A. Uslamina, and E. V. Zharikov, “Spectral properties of Nd3+ ions in samples of transparent Y2O3 ceramics,” Opt. Spectrosc. 106, 549–555 (2009).
[CrossRef]

G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
[CrossRef]

V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Energy transfer driven infrared emission processes in rare earth doped Sc2O3 ceramics,” J. Lumin. 129, 1862–1865 (2009).
[CrossRef]

V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high energy Yb lasers,” Opt. Lett. 34, 2141–2143 (2009).
[CrossRef] [PubMed]

2008 (4)

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

E. A. Khazanov and A. M. Sergeev, “Petawatt lasers based on optical parametric amplifiers: their state and prospects,” Physics-Uspekhi 51, 969–974 (2008).
[CrossRef]

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861 (2008).
[CrossRef]

2007 (2)

G. Boulon and V. Lupei, “Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals,” J. Lumin. 125, 45–54 (2007).
[CrossRef]

J. B. Gruber, D. K. Sardar, K. L. Nash, and R. M. Yow, “Comparative study of the crystal field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide,” J. Appl. Phys. 102, 023103 (2007).
[CrossRef]

2006 (1)

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorge, “Continuous-wave and tunable laser emission of Yb3+ in Nd:YbCaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

2005 (2)

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb) -doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86, 111118 (2005).
[CrossRef]

2004 (1)

2003 (1)

A. Lupei, V. Lupei, T. Taira, Y. Sato, A. Ikesue, and C. Gheorghe, “Energy transfer processes of Nd in Y2O3 ceramic,” J. Lumin. 102/103, 72–76 (2003).
[CrossRef]

2002 (3)

2001 (2)

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mater. 16, 475–483 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

2000 (1)

K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
[CrossRef]

1999 (2)

A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, “Electron-phonon coupling effects on Yb3+ spectra in several laser crystals,” J. Phys. Condens. Matter 11, 3769–3778 (1999).
[CrossRef]

A. Lupei, V. Lupei, V. N. Enaki, C. Presura, and A. Petraru, “Electron-photon coupling for heavy RE3+ ions in crystals,” Spectrochim. Acta 55, 773–781 (1999).
[CrossRef]

1996 (1)

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of transparent Nd-doped HfO2–Y2O3 ceramics using HIP,” J. Am. Ceram. Soc. 79, 359–364 (1996).
[CrossRef]

1995 (1)

N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995).
[CrossRef]

1982 (1)

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels and crystal field analysis of tripositive rare earth ions in Y2O3. I Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

1972 (2)

A. I. Burnstein, “Jump mechanism of energy transfer,” Sov. Phys. JETP 35, 882–891 (1972).

S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

1971 (1)

M. J. Weber, “Optical properties of Yb3+ and Nd3+–Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
[CrossRef]

1970 (1)

1965 (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on the donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

1964 (1)

G. E. Petersen and P. M. Bridenbaugh, “Application of resonance cooperation of rare earth ions Nd3+ and Yb3+ to lasers (Na0.5RE0.5WO4),” Appl. Phys. Lett. 4, 201–202 (1964).
[CrossRef]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Arcangeli, A.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Barnes, N. P.

Basun, S. A.

K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
[CrossRef]

Bausa, L. E.

Bettinelli, M.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

D. Jaque, M. O. Ramírez, L. E. Bausa, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd and Yb concentration on the Nd→Yb energy transfer in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentrations for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

Bonelli, L.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Boulon, G.

G. Boulon and V. Lupei, “Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals,” J. Lumin. 125, 45–54 (2007).
[CrossRef]

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mater. 16, 475–483 (2001).
[CrossRef]

Bourdet, G. L.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Bridenbaugh, P. M.

G. E. Petersen and P. M. Bridenbaugh, “Application of resonance cooperation of rare earth ions Nd3+ and Yb3+ to lasers (Na0.5RE0.5WO4),” Appl. Phys. Lett. 4, 201–202 (1964).
[CrossRef]

Burnstein, A. I.

A. I. Burnstein, “Jump mechanism of energy transfer,” Sov. Phys. JETP 35, 882–891 (1972).

Caldiño, U.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

Camy, P.

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorge, “Continuous-wave and tunable laser emission of Yb3+ in Nd:YbCaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

Casagrande, O.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Cavalli, E.

Chang, N. C.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels and crystal field analysis of tripositive rare earth ions in Y2O3. I Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

Cohen-Adad, M. T.

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mater. 16, 475–483 (2001).
[CrossRef]

Deguil-Robin, N.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Demirkhanyan, G. G.

G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
[CrossRef]

Demirkhanyan, H. G.

G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Diaconescu, B.

Dong, C.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Doualan, J.-L.

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorge, “Continuous-wave and tunable laser emission of Yb3+ in Nd:YbCaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

Dubinskii, M.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861 (2008).
[CrossRef]

Edwards, W. C.

Enaki, V. N.

A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, “Electron-phonon coupling effects on Yb3+ spectra in several laser crystals,” J. Phys. Condens. Matter 11, 3769–3778 (1999).
[CrossRef]

A. Lupei, V. Lupei, V. N. Enaki, C. Presura, and A. Petraru, “Electron-photon coupling for heavy RE3+ ions in crystals,” Spectrochim. Acta 55, 773–781 (1999).
[CrossRef]

Equal, R. W.

Fornasiero, L.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides crystal growth, spectroscopy and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

Forsaniero, L.

K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
[CrossRef]

García Solé, J.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

Georgescu, S.

Gheorghe, C.

V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high energy Yb lasers,” Opt. Lett. 34, 2141–2143 (2009).
[CrossRef] [PubMed]

V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Energy transfer driven infrared emission processes in rare earth doped Sc2O3 ceramics,” J. Lumin. 129, 1862–1865 (2009).
[CrossRef]

A. Lupei, V. Lupei, T. Taira, Y. Sato, A. Ikesue, and C. Gheorghe, “Energy transfer processes of Nd in Y2O3 ceramic,” J. Lumin. 102/103, 72–76 (2003).
[CrossRef]

Golubov, S. I.

S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

Goutaudier, C.

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mater. 16, 475–483 (2001).
[CrossRef]

Gruber, J. B.

G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
[CrossRef]

J. B. Gruber, D. K. Sardar, K. L. Nash, and R. M. Yow, “Comparative study of the crystal field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide,” J. Appl. Phys. 102, 023103 (2007).
[CrossRef]

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels and crystal field analysis of tripositive rare earth ions in Y2O3. I Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

Guyot, Y.

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mater. 16, 475–483 (2001).
[CrossRef]

Harschak, A.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Hau, S.

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on the donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Huber, G.

K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
[CrossRef]

Hutchinson, R. L.

Ikesue, A.

V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high energy Yb lasers,” Opt. Lett. 34, 2141–2143 (2009).
[CrossRef] [PubMed]

V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Energy transfer driven infrared emission processes in rare earth doped Sc2O3 ceramics,” J. Lumin. 129, 1862–1865 (2009).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb) -doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86, 111118 (2005).
[CrossRef]

A. Lupei, V. Lupei, T. Taira, Y. Sato, A. Ikesue, and C. Gheorghe, “Energy transfer processes of Nd in Y2O3 ceramic,” J. Lumin. 102/103, 72–76 (2003).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd: YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[CrossRef]

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of transparent Nd-doped HfO2–Y2O3 ceramics using HIP,” J. Am. Ceram. Soc. 79, 359–364 (1996).
[CrossRef]

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on the donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Jaque, D.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

D. Jaque, M. O. Ramírez, L. E. Bausa, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd and Yb concentration on the Nd→Yb energy transfer in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentrations for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

Jetschke, S.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Jia, Z.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Jiang, M.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Kamata, K.

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of transparent Nd-doped HfO2–Y2O3 ceramics using HIP,” J. Am. Ceram. Soc. 79, 359–364 (1996).
[CrossRef]

Kaminskii, A. A.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

Katoh, Y.

N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995).
[CrossRef]

Khazanov, E. A.

E. A. Khazanov and A. M. Sergeev, “Petawatt lasers based on optical parametric amplifiers: their state and prospects,” Physics-Uspekhi 51, 969–974 (2008).
[CrossRef]

Kirchoff, J.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Kokanyan, E. P.

G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
[CrossRef]

Konigstein, J.

Konobeev, Yu. V.

S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

Kostanyan, R. B.

G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
[CrossRef]

Kuch, S.

K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
[CrossRef]

Kurimura, S.

Laversenne, L.

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mater. 16, 475–483 (2001).
[CrossRef]

Le Garrec, B.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Leavitt, R. P.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels and crystal field analysis of tripositive rare earth ions in Y2O3. I Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

Liem, A.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Limpert, J.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Lu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

Lupei, A.

V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high energy Yb lasers,” Opt. Lett. 34, 2141–2143 (2009).
[CrossRef] [PubMed]

V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Energy transfer driven infrared emission processes in rare earth doped Sc2O3 ceramics,” J. Lumin. 129, 1862–1865 (2009).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb) -doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86, 111118 (2005).
[CrossRef]

A. Lupei, V. Lupei, T. Taira, Y. Sato, A. Ikesue, and C. Gheorghe, “Energy transfer processes of Nd in Y2O3 ceramic,” J. Lumin. 102/103, 72–76 (2003).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd: YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[CrossRef]

A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, “Electron-phonon coupling effects on Yb3+ spectra in several laser crystals,” J. Phys. Condens. Matter 11, 3769–3778 (1999).
[CrossRef]

A. Lupei, V. Lupei, V. N. Enaki, C. Presura, and A. Petraru, “Electron-photon coupling for heavy RE3+ ions in crystals,” Spectrochim. Acta 55, 773–781 (1999).
[CrossRef]

Lupei, V.

V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Energy transfer driven infrared emission processes in rare earth doped Sc2O3 ceramics,” J. Lumin. 129, 1862–1865 (2009).
[CrossRef]

V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high energy Yb lasers,” Opt. Lett. 34, 2141–2143 (2009).
[CrossRef] [PubMed]

G. Boulon and V. Lupei, “Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals,” J. Lumin. 125, 45–54 (2007).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb) -doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86, 111118 (2005).
[CrossRef]

A. Lupei, V. Lupei, T. Taira, Y. Sato, A. Ikesue, and C. Gheorghe, “Energy transfer processes of Nd in Y2O3 ceramic,” J. Lumin. 102/103, 72–76 (2003).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd: YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[CrossRef]

A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, “Electron-phonon coupling effects on Yb3+ spectra in several laser crystals,” J. Phys. Condens. Matter 11, 3769–3778 (1999).
[CrossRef]

A. Lupei, V. Lupei, V. N. Enaki, C. Presura, and A. Petraru, “Electron-photon coupling for heavy RE3+ ions in crystals,” Spectrochim. Acta 55, 773–781 (1999).
[CrossRef]

Martín-Rodríguez, E.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

McMahon, J. M.

Merkle, L. D.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861 (2008).
[CrossRef]

Michael, A.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861 (2008).
[CrossRef]

Mix, E.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides crystal growth, spectroscopy and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
[CrossRef]

Moncorge, R.

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorge, “Continuous-wave and tunable laser emission of Yb3+ in Nd:YbCaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

Morl, K.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Morrison, C. A.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels and crystal field analysis of tripositive rare earth ions in Y2O3. I Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

Murai, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

Nash, K. L.

G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
[CrossRef]

J. B. Gruber, D. K. Sardar, K. L. Nash, and R. M. Yow, “Comparative study of the crystal field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide,” J. Appl. Phys. 102, 023103 (2007).
[CrossRef]

Newburgh, G. A.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861 (2008).
[CrossRef]

Ohishi, Y.

N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995).
[CrossRef]

Osiac, E.

V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Energy transfer driven infrared emission processes in rare earth doped Sc2O3 ceramics,” J. Lumin. 129, 1862–1865 (2009).
[CrossRef]

Petermann, K.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides crystal growth, spectroscopy and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
[CrossRef]

Peters, V.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides crystal growth, spectroscopy and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
[CrossRef]

V. Peters, “Growth and spectroscopy of ytterbium-doped sesquioxides,” Dissertation thesis, (Universität Hamburg, 2001).

Petersen, G. E.

G. E. Petersen and P. M. Bridenbaugh, “Application of resonance cooperation of rare earth ions Nd3+ and Yb3+ to lasers (Na0.5RE0.5WO4),” Appl. Phys. Lett. 4, 201–202 (1964).
[CrossRef]

Petit, V.

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorge, “Continuous-wave and tunable laser emission of Yb3+ in Nd:YbCaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

Petraru, A.

A. Lupei, V. Lupei, V. N. Enaki, C. Presura, and A. Petraru, “Electron-photon coupling for heavy RE3+ ions in crystals,” Spectrochim. Acta 55, 773–781 (1999).
[CrossRef]

A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, “Electron-phonon coupling effects on Yb3+ spectra in several laser crystals,” J. Phys. Condens. Matter 11, 3769–3778 (1999).
[CrossRef]

Presura, C.

A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, “Electron-phonon coupling effects on Yb3+ spectra in several laser crystals,” J. Phys. Condens. Matter 11, 3769–3778 (1999).
[CrossRef]

A. Lupei, V. Lupei, V. N. Enaki, C. Presura, and A. Petraru, “Electron-photon coupling for heavy RE3+ ions in crystals,” Spectrochim. Acta 55, 773–781 (1999).
[CrossRef]

Ramírez, M. O.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

D. Jaque, M. O. Ramírez, L. E. Bausa, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd and Yb concentration on the Nd→Yb energy transfer in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentrations for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

Reichel, V.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Sandrock, T.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Sardar, D. K.

G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
[CrossRef]

J. B. Gruber, D. K. Sardar, K. L. Nash, and R. M. Yow, “Comparative study of the crystal field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide,” J. Appl. Phys. 102, 023103 (2007).
[CrossRef]

Sato, Y.

Schnaack, G.

Sergeev, A. M.

E. A. Khazanov and A. M. Sergeev, “Petawatt lasers based on optical parametric amplifiers: their state and prospects,” Physics-Uspekhi 51, 969–974 (2008).
[CrossRef]

Shimokozono, M.

N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995).
[CrossRef]

Speghini, A.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

D. Jaque, M. O. Ramírez, L. E. Bausa, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd and Yb concentration on the Nd→Yb energy transfer in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentrations for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

Sudo, S.

N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995).
[CrossRef]

Sugimoto, N.

N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995).
[CrossRef]

Taira, T.

Takaichi, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

Tao, X.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Tate, A.

N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995).
[CrossRef]

Ter-Gabrielyan, N.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861 (2008).
[CrossRef]

Tonelli, M.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Tunnermann, A.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Ueda, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

Uematsu, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

Unger, S.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Ushakov, S. N.

S. N. Ushakov, M. A. Uslamina, and E. V. Zharikov, “Spectral properties of Nd3+ ions in samples of transparent Y2O3 ceramics,” Opt. Spectrosc. 106, 549–555 (2009).
[CrossRef]

Uslamina, M. A.

S. N. Ushakov, M. A. Uslamina, and E. V. Zharikov, “Spectral properties of Nd3+ ions in samples of transparent Y2O3 ceramics,” Opt. Spectrosc. 106, 549–555 (2009).
[CrossRef]

Walsh, B. M.

Weber, M. J.

M. J. Weber, “Optical properties of Yb3+ and Nd3+–Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
[CrossRef]

Yagi, H.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

Yanagitani, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

Yoshida, K.

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of transparent Nd-doped HfO2–Y2O3 ceramics using HIP,” J. Am. Ceram. Soc. 79, 359–364 (1996).
[CrossRef]

Yow, R. M.

J. B. Gruber, D. K. Sardar, K. L. Nash, and R. M. Yow, “Comparative study of the crystal field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide,” J. Appl. Phys. 102, 023103 (2007).
[CrossRef]

Zellmer, H.

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Zhang, J.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Zharikov, E. V.

S. N. Ushakov, M. A. Uslamina, and E. V. Zharikov, “Spectral properties of Nd3+ ions in samples of transparent Y2O3 ceramics,” Opt. Spectrosc. 106, 549–555 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

G. E. Petersen and P. M. Bridenbaugh, “Application of resonance cooperation of rare earth ions Nd3+ and Yb3+ to lasers (Na0.5RE0.5WO4),” Appl. Phys. Lett. 4, 201–202 (1964).
[CrossRef]

N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995).
[CrossRef]

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorge, “Continuous-wave and tunable laser emission of Yb3+ in Nd:YbCaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb) -doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86, 111118 (2005).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of transparent Nd-doped HfO2–Y2O3 ceramics using HIP,” J. Am. Ceram. Soc. 79, 359–364 (1996).
[CrossRef]

J. Appl. Phys. (3)

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009).
[CrossRef]

J. B. Gruber, D. K. Sardar, K. L. Nash, and R. M. Yow, “Comparative study of the crystal field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide,” J. Appl. Phys. 102, 023103 (2007).
[CrossRef]

J. Chem. Phys. (3)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on the donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels and crystal field analysis of tripositive rare earth ions in Y2O3. I Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

J. Lumin. (4)

K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000).
[CrossRef]

G. Boulon and V. Lupei, “Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals,” J. Lumin. 125, 45–54 (2007).
[CrossRef]

V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Energy transfer driven infrared emission processes in rare earth doped Sc2O3 ceramics,” J. Lumin. 129, 1862–1865 (2009).
[CrossRef]

A. Lupei, V. Lupei, T. Taira, Y. Sato, A. Ikesue, and C. Gheorghe, “Energy transfer processes of Nd in Y2O3 ceramic,” J. Lumin. 102/103, 72–76 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

J. Phys. Condens. Matter (1)

A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, “Electron-phonon coupling effects on Yb3+ spectra in several laser crystals,” J. Phys. Condens. Matter 11, 3769–3778 (1999).
[CrossRef]

J. Phys.: Conf. Ser. (1)

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001).
[CrossRef]

Opt. Commun. (1)

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861 (2008).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (2)

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides crystal growth, spectroscopy and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mater. 16, 475–483 (2001).
[CrossRef]

Opt. Spectrosc. (1)

S. N. Ushakov, M. A. Uslamina, and E. V. Zharikov, “Spectral properties of Nd3+ ions in samples of transparent Y2O3 ceramics,” Opt. Spectrosc. 106, 549–555 (2009).
[CrossRef]

Phys. Rev. B (2)

M. J. Weber, “Optical properties of Yb3+ and Nd3+–Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
[CrossRef]

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

Physics-Uspekhi (1)

E. A. Khazanov and A. M. Sergeev, “Petawatt lasers based on optical parametric amplifiers: their state and prospects,” Physics-Uspekhi 51, 969–974 (2008).
[CrossRef]

Proc. SPIE (1)

V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005).
[CrossRef]

Sov. Phys. JETP (1)

A. I. Burnstein, “Jump mechanism of energy transfer,” Sov. Phys. JETP 35, 882–891 (1972).

Sov. Phys. Solid State (1)

S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

Spectrochim. Acta (1)

A. Lupei, V. Lupei, V. N. Enaki, C. Presura, and A. Petraru, “Electron-photon coupling for heavy RE3+ ions in crystals,” Spectrochim. Acta 55, 773–781 (1999).
[CrossRef]

Other (1)

V. Peters, “Growth and spectroscopy of ytterbium-doped sesquioxides,” Dissertation thesis, (Universität Hamburg, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

10 and 300 K Yb 3 + ( 1 at. % ) F 7 2 2 F 5 2 2 absorption in Y 2 O 3 ceramic.

Fig. 2
Fig. 2

Temperature dependence of the F 7 2 2 ( 1 ) F 5 2 2 ( 1 ) Yb 3 + absorption: (a) global intensity and (b) C 2 center peak absorption coefficient and linewidth (FWHM) in Y 2 O 3 : Yb ( 1 at. % ) ceramic.

Fig. 3
Fig. 3

10 and 300 K I 9 2 4 F 3 2 4 absorption cross sections of the Nd 3 + : Y 2 O 3 ceramic. In insert, the additional small lines observed in some samples are shown.

Fig. 4
Fig. 4

Temperature variation of the Nd 3 + absorption in Y 2 O 3 : (a) cross sections and (b) linewidths (FWHM) for 820 nm , 807 nm , and 892 nm lines in Y 2 O 3 ceramic.

Fig. 5
Fig. 5

The room-temperature Nd 3 + F 3 2 4 I 9 2 4 emission (estimated by reciprocity method) and Yb 3 + F 7 2 2 F 5 2 2 absorption cross sections in Y 2 O 3 transparent ceramic. In insert, the overlap function F ( E ) is presented.

Fig. 6
Fig. 6

Energy levels involved in the Nd Nd and Nd Yb energy transfers in Y 2 O 3 transparent ceramics.

Fig. 7
Fig. 7

Emission of Y 2 O 3 : Nd 1 Yb x ( x = 0 , 1 , 3 ) ceramics at 300 K under Nd 3 + excitation. The spectra are normalized to the Nd F 3 2 4 I 9 2 4 emission.

Fig. 8
Fig. 8

The temperature dependence of the emission in a Nd1–Yb1 Y 2 O 3 ceramic sample under Nd 3 + excitation. The insert presents an extended spectrum of F 5 2 2 ( 1 ) F 7 2 2 ( 1 ) Yb 3 + emission at 10 K .

Fig. 9
Fig. 9

300 K emission decays of (a) Nd 3 + F 3 2 4 Nd 1 Yb x ( x = 0 , 1 , 3 , 5 ) samples and (b) Nd 3 + F 3 2 4 and Yb 3 + F 5 2 2 in Nd1–Yb1 samples under Nd 3 + excitation with 532 nm .

Fig. 10
Fig. 10

Ground levels fractional thermal population versus temperature: (a) Yb 3 + ( F 7 2 2 ) and (b) Nd 3 + ( I 9 2 4 ) in Y 2 O 3 .

Fig. 11
Fig. 11

The experimental transfer function P Nd Yb ( t ) for the Nd 1 Yb x ( x = 1 , 3 , 5 ) : Y 2 O 3 ceramic at 300 K ; insert gives the concentration dependence of the γ Nd Yb parameter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η tr = 1 τ Nd Yb τ Nd ,
I ( t ) = I ( 0 ) exp ( t τ D ) exp [ P ( t ) W ¯ t ] ,
P ( t ) P Nd Nd ( t ) + P Nd Yb ( t ) .

Metrics