Abstract

Erbium-doped aluminum oxide integrated optical amplifiers were fabricated on silicon substrates, and their characteristics were investigated for Er concentrations ranging from 0.27to4.2×1020cm3. Background losses below 0.3dBcm at 1320nm were measured. For optimum Er concentrations in the range of 1to2×1020cm3, an internal net gain was obtained over a wavelength range of 80nm (15001580nm), and a peak gain of 2.0dBcm was measured at 1533nm. The broadband and high peak gain are attributed to an optimized fabrication process, improved waveguide design, and pumping at 977nm as opposed to 1480nm. In a 5.4-cm-long amplifier, a total internal net gain of up to 9.3dB was measured. By use of a rate-equation model, an internal net gain of 33dB at the 1533nm gain peak and more than 20dB for all wavelengths within the telecom C-band (15251565nm) are predicted for a launched signal power of 1μW when launching 100mW of pump power into a 24-cm-long amplifier. The high optical gain demonstrates that Al2O3:Er3+ is a competitive technology for active integrated optics.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Silicon Photonics: The State of the Art, G.T.Reed, ed. (Wiley, 2008).
    [CrossRef]
  2. T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
    [CrossRef]
  3. T. H. Hoekstra, P. V. Lambeck, H. Albers, and Th. J. A. Popma, “Sputter-deposited erbium-doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
    [CrossRef]
  4. R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2356-2360 (1994).
    [CrossRef]
  5. P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
    [CrossRef]
  6. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
    [CrossRef]
  7. A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
    [CrossRef]
  8. A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd,Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850-1853 (2008).
    [CrossRef]
  9. T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334-335 (1991).
    [CrossRef]
  10. W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005).
    [CrossRef]
  11. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
    [CrossRef]
  12. D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
    [CrossRef]
  13. S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15, 516-518 (2003).
    [CrossRef]
  14. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626-2628 (2004).
    [CrossRef] [PubMed]
  15. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996).
    [CrossRef]
  16. C. E. Chryssou and C. W. Pitt, “Er -doped Al2O3 thin films by plasma-enhanced chemical vapor deposition (PECVD) exhibiting a 55 nm optical bandwidth,” IEEE J. Quantum Electron. 34, 282-285 (1998).
    [CrossRef]
  17. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996).
    [CrossRef]
  18. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009).
    [CrossRef]
  19. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B: Lasers Opt. 89, 311-318 (2007).
    [CrossRef]
  20. L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.
  21. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954-957 (1964).
    [CrossRef]
  22. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258-260 (1991).
    [CrossRef] [PubMed]
  23. E. Desurvire and J. R. Simpson, “Evaluation of I15/24 and I13/24 Stark-level energies in erbium-doped aluminosilicate glass fibers,” Opt. Lett. 15, 547-549 (1990).
    [CrossRef] [PubMed]
  24. G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36, 3338-3341 (1997).
    [CrossRef] [PubMed]
  25. S. F. Li, C. L. Song, Q. J. Xiong, and B. Ran, “A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers,” Opt. Quantum Electron. 34, 859-866 (2002).
    [CrossRef]
  26. S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36, 1089-1097 (2000).
    [CrossRef]
  27. R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” in Fiber Laser Sources and Amplifiers III, Procc. SPIE 1581, 72-79 (1991).
  28. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited-state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68-80 (1993).
    [CrossRef]

2009

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009).
[CrossRef]

2008

2007

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B: Lasers Opt. 89, 311-318 (2007).
[CrossRef]

2006

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

2005

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005).
[CrossRef]

2004

2003

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15, 516-518 (2003).
[CrossRef]

2002

S. F. Li, C. L. Song, Q. J. Xiong, and B. Ran, “A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers,” Opt. Quantum Electron. 34, 859-866 (2002).
[CrossRef]

2000

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36, 1089-1097 (2000).
[CrossRef]

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

1998

C. E. Chryssou and C. W. Pitt, “Er -doped Al2O3 thin films by plasma-enhanced chemical vapor deposition (PECVD) exhibiting a 55 nm optical bandwidth,” IEEE J. Quantum Electron. 34, 282-285 (1998).
[CrossRef]

1997

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36, 3338-3341 (1997).
[CrossRef] [PubMed]

1996

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996).
[CrossRef]

1994

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2356-2360 (1994).
[CrossRef]

1993

T. H. Hoekstra, P. V. Lambeck, H. Albers, and Th. J. A. Popma, “Sputter-deposited erbium-doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited-state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68-80 (1993).
[CrossRef]

1992

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

1991

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334-335 (1991).
[CrossRef]

W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258-260 (1991).
[CrossRef] [PubMed]

1990

1964

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954-957 (1964).
[CrossRef]

Agazzi, L.

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

Albers, H.

T. H. Hoekstra, P. V. Lambeck, H. Albers, and Th. J. A. Popma, “Sputter-deposited erbium-doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

Ay, F.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009).
[CrossRef]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B: Lasers Opt. 89, 311-318 (2007).
[CrossRef]

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

Barberis, A.

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

Barbier, D.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Bastard, L.

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15, 516-518 (2003).
[CrossRef]

Baumann, I.

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2356-2360 (1994).
[CrossRef]

Béguin, A.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

Blaize, S.

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15, 516-518 (2003).
[CrossRef]

Blauwendraat, T.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009).
[CrossRef]

Bradley, J. D. B.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009).
[CrossRef]

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd,Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850-1853 (2008).
[CrossRef]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B: Lasers Opt. 89, 311-318 (2007).
[CrossRef]

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

Brinkmann, R.

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2356-2360 (1994).
[CrossRef]

Broquin, J. E.

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15, 516-518 (2003).
[CrossRef]

Camy, P.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

Cassagnètes, C.

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15, 516-518 (2003).
[CrossRef]

Cerullo, G.

Chiodo, N.

Chryssou, C. E.

C. E. Chryssou and C. W. Pitt, “Er -doped Al2O3 thin films by plasma-enhanced chemical vapor deposition (PECVD) exhibiting a 55 nm optical bandwidth,” IEEE J. Quantum Electron. 34, 282-285 (1998).
[CrossRef]

Clauss, G.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Costa, R.

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

Cusmai, G.

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

Das, B. K.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005).
[CrossRef]

de Ridder, R. M.

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

de Waal, H.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Delavaux, J.-M. P.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Della Valle, G.

Desurvire, E.

Dey, D.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005).
[CrossRef]

Dinand, M.

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2356-2360 (1994).
[CrossRef]

Faber, A. J.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Fontaine, N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Funk, D. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Geskus, D.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009).
[CrossRef]

Hattori, K.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334-335 (1991).
[CrossRef]

Hayden, J. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Heinrich, S.

Hempstead, M.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

Hierle, R.

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

Hoekstra, T. H.

T. H. Hoekstra, P. V. Lambeck, H. Albers, and Th. J. A. Popma, “Sputter-deposited erbium-doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

Horiguchi, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

Houde-Walter, S. N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Huber, G.

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd,Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850-1853 (2008).
[CrossRef]

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

Izumitani, T.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited-state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68-80 (1993).
[CrossRef]

Kahn, A.

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd,Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850-1853 (2008).
[CrossRef]

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

Kevorkian, A.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Kik, P. G.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Killi, A.

Kitagawa, T.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334-335 (1991).
[CrossRef]

Kobayashi, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334-335 (1991).
[CrossRef]

Koonen, A. M. J.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996).
[CrossRef]

Kopf, D.

Kühn, H.

Kuzminykh, Y.

Lambeck, P. V.

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36, 1089-1097 (2000).
[CrossRef]

T. H. Hoekstra, P. V. Lambeck, H. Albers, and Th. J. A. Popma, “Sputter-deposited erbium-doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

Laporta, P.

Le Quang, A. Q.

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

Lederer, M.

Ledoux, I.

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

Lerminiaux, C.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

Li, S. F.

S. F. Li, C. L. Song, Q. J. Xiong, and B. Ran, “A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers,” Opt. Quantum Electron. 34, 859-866 (2002).
[CrossRef]

Liu, W. C.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954-957 (1964).
[CrossRef]

Miniscalco, W. J.

W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258-260 (1991).
[CrossRef] [PubMed]

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” in Fiber Laser Sources and Amplifiers III, Procc. SPIE 1581, 72-79 (1991).

Morgner, U.

Murphy, E.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Musa, S.

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36, 1089-1097 (2000).
[CrossRef]

Obarski, G. E.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Ohmori, Y.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334-335 (1991).
[CrossRef]

Osellame, R.

Peskin, A. P.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Petermann, K.

Peters, P. M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Pietralunga, S. M.

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

Pitt, C. W.

C. E. Chryssou and C. W. Pitt, “Er -doped Al2O3 thin films by plasma-enhanced chemical vapor deposition (PECVD) exhibiting a 55 nm optical bandwidth,” IEEE J. Quantum Electron. 34, 282-285 (1998).
[CrossRef]

Pollnau, M.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009).
[CrossRef]

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd,Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850-1853 (2008).
[CrossRef]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B: Lasers Opt. 89, 311-318 (2007).
[CrossRef]

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

Polman, A.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36, 3338-3341 (1997).
[CrossRef] [PubMed]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996).
[CrossRef]

Popma, Th. J. A.

T. H. Hoekstra, P. V. Lambeck, H. Albers, and Th. J. A. Popma, “Sputter-deposited erbium-doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

Prel, C.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

Quimby, R. S.

W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258-260 (1991).
[CrossRef] [PubMed]

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” in Fiber Laser Sources and Amplifiers III, Procc. SPIE 1581, 72-79 (1991).

Ran, B.

S. F. Li, C. L. Song, Q. J. Xiong, and B. Ran, “A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers,” Opt. Quantum Electron. 34, 859-866 (2002).
[CrossRef]

Rattay, M.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Reza, S.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005).
[CrossRef]

Ricken, R.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005).
[CrossRef]

Román, J. E.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

Saint André, F.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

Sanford, N. A.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Scheife, H.

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

Shimizu, M.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334-335 (1991).
[CrossRef]

Shuto, K.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

Simpson, J. R.

Smit, M. K.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36, 3338-3341 (1997).
[CrossRef] [PubMed]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996).
[CrossRef]

Snoeks, E.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996).
[CrossRef]

Sohler, W.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005).
[CrossRef]

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2356-2360 (1994).
[CrossRef]

Song, C. L.

S. F. Li, C. L. Song, Q. J. Xiong, and B. Ran, “A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers,” Opt. Quantum Electron. 34, 859-866 (2002).
[CrossRef]

Suche, H.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005).
[CrossRef]

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2356-2360 (1994).
[CrossRef]

Svelto, O.

Taccheo, S.

Thompson, B.

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” in Fiber Laser Sources and Amplifiers III, Procc. SPIE 1581, 72-79 (1991).

Trouillon, M.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

van Dam, C.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36, 3338-3341 (1997).
[CrossRef] [PubMed]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996).
[CrossRef]

van den Hoven, G. N.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36, 3338-3341 (1997).
[CrossRef] [PubMed]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996).
[CrossRef]

van der Elsken, J. A.

van der Plaats, J. C.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

van Uffelen, J. W. M.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996).
[CrossRef]

van Uffelen, K. W. M.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36, 3338-3341 (1997).
[CrossRef] [PubMed]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996).
[CrossRef]

van Weerden, H. J.

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36, 1089-1097 (2000).
[CrossRef]

Veasey, D. L.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Wilkinson, J. S.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

Willems, F. W.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

Wörhoff, K.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009).
[CrossRef]

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd,Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850-1853 (2008).
[CrossRef]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B: Lasers Opt. 89, 311-318 (2007).
[CrossRef]

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

Xiong, Q. J.

S. F. Li, C. L. Song, Q. J. Xiong, and B. Ran, “A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers,” Opt. Quantum Electron. 34, 859-866 (2002).
[CrossRef]

Yan, Y. C.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Yasu, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

Yau, T. H.

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36, 1089-1097 (2000).
[CrossRef]

Young, M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

Zou, X.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited-state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68-80 (1993).
[CrossRef]

Zyss, J.

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B: Lasers Opt.

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B: Lasers Opt. 89, 311-318 (2007).
[CrossRef]

Appl. Phys. Lett.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006).
[CrossRef]

Electron. Lett.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334-335 (1991).
[CrossRef]

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

T. H. Hoekstra, P. V. Lambeck, H. Albers, and Th. J. A. Popma, “Sputter-deposited erbium-doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996).
[CrossRef]

IEEE J. Quantum Electron.

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2356-2360 (1994).
[CrossRef]

C. E. Chryssou and C. W. Pitt, “Er -doped Al2O3 thin films by plasma-enhanced chemical vapor deposition (PECVD) exhibiting a 55 nm optical bandwidth,” IEEE J. Quantum Electron. 34, 282-285 (1998).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009).
[CrossRef]

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36, 1089-1097 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997).
[CrossRef]

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15, 516-518 (2003).
[CrossRef]

IEICE Trans. Electron.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005).
[CrossRef]

J. Appl. Phys.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996).
[CrossRef]

J. Non-Cryst. Solids

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited-state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68-80 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Quantum Electron.

S. F. Li, C. L. Song, Q. J. Xiong, and B. Ran, “A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers,” Opt. Quantum Electron. 34, 859-866 (2002).
[CrossRef]

Phys. Rev. A

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954-957 (1964).
[CrossRef]

Other

L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.

Silicon Photonics: The State of the Art, G.T.Reed, ed. (Wiley, 2008).
[CrossRef]

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” in Fiber Laser Sources and Amplifiers III, Procc. SPIE 1581, 72-79 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Er concentration versus Er target sputtering power (data points) and polynomial fit (dashed curve).

Fig. 2
Fig. 2

Al 2 O 3 : Er 3 + layer thickness and Er concentration as a function of distance from the center of the wafer for a sputtering power of 12 W applied to the Er target.

Fig. 3
Fig. 3

Total planar waveguide propagation loss α Total at 633 nm , 977 nm , 1320 nm , and 1533 nm as a function of Er concentration. The dashed curves represent the fitted propagation loss at 977 nm and 1533 nm using the average background loss, average confinement factor, and experimentally determined absorption cross sections at each wavelength.

Fig. 4
Fig. 4

Emission cross section determined from the luminescence spectra of samples with Er concentrations of 1.00 to 4.22 × 10 20 cm 3 . The absorption cross section measured at single wavelengths in the range 1480–1580 nm for N d = 1.17 × 10 20 cm - 3 and calculated using the McCumber theory is indicated by the plotted points and dashed curve, respectively.

Fig. 5
Fig. 5

Experimental setup for measuring gain in Al 2 O 3 : Er 3 + channel waveguides.

Fig. 6
Fig. 6

(a) Internal net gain versus Er concentration for an amplifier length of 6 cm and a launched 977 nm pump power of 50 mW ; (b) gain versus launched pump power for an Er concentration of 1.17 × 10 20 cm 3 and pump wavelengths of 977 nm and 1480 nm ; (c) internal net gain as a function of wavelength for an amplifier length of 5.4 cm , Er concentration of 1.17 × 10 20 cm 3 , and a launched pump power of 80 mW .

Fig. 7
Fig. 7

(a) Internal net gain per unit length for each concentration for sample lengths optimized for a launched pump power of 80 mW ; (b) measured and simulated gain versus launched pump power for an amplifier length of 2.1 cm and Er concentration of 2.12 × 10 20 cm 3 .

Fig. 8
Fig. 8

(a) Population inversion fraction and (b) total internal net gain at 1533 nm versus waveguide length for a launched pump power of 100 mW and varying Er concentration (indicated in units of 10 20 cm 3 ).

Fig. 9
Fig. 9

(a) 977 nm pump and 1533 nm signal power and (b) total internal net gain versus waveguide length for a launched pump power of 100 mW , Er concentration of 1.0 × 10 20 cm 3 , and varying launched signal power P S ( 0 ) .

Fig. 10
Fig. 10

Simulated total internal net gain vs. waveguide length for an Er concentration of 2.0 × 10 20 cm 3 , launched signal power of 1 μ W , launched pump power of 100 mW , and varying signal wavelength within the telecom C-band.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

σ abs ( λ ) = α Er ( λ ) 10 log ( e ) Γ ( λ ) N 0 ,
1 τ rad = 8 π n 2 c σ em ( λ ) λ 4 d λ ,
σ em ( λ ) = σ abs ( λ ) Z 0 Z 1 exp ( E o E ( λ ) k T ) ,
γ ( λ ) = 10 log 10 [ I On ( λ ) I Off ( λ ) ] L α Total ( λ ) ,
I P S ( z + Δ z ) = I P S ( z ) exp { [ σ em ( λ P S ) N 2 1 ( z ) σ abs ( λ P S ) N 0 ( z ) σ ESA ( λ P S ) N 2 1 ( z ) α Loss ( λ P S ) ] Δ z } I P S ( z ) { 1 + [ σ em ( λ P S ) N 2 1 ( z ) σ abs ( λ P S ) N 0 ( z ) σ ESA ( λ P S ) N 2 1 ( z ) α Loss ( λ P S ) ] Δ z } ,
Δ I Stim , P S ( z + Δ z ) = I P S ( z ) [ σ em ( λ P S ) N 2 1 ( z ) σ abs ( λ P S ) N 0 ( z ) ] Δ z ,
R P S ( z ) = λ P S h c 1 Δ z Δ I Stim , P S ( z + Δ z ) = λ P S h c 1 Δ z I P S ( z ) [ σ em ( λ P S ) N 2 1 ( z ) σ abs ( λ P S ) N 0 ( z ) ] Δ z = φ P S ( z ) [ σ em ( λ P S ) N 2 1 ( z ) σ abs ( λ P S ) N 0 ( z ) ] ,
d N 2 ( z ) d t = R P ( z ) + W ETU N 1 2 ( z ) 1 τ 2 N 2 ( z ) ,
d N 1 ( z ) d t = R S ( z ) + 1 τ 2 N 2 ( z ) 1 τ 1 N 1 ( z ) 2 W ETU N 1 2 ( z ) .
N 1 ( z ) = B + B 2 4 A C 2 A ,
N 2 ( z ) = σ abs ( λ P ) φ P [ N d N 1 ( z ) ] + W ETU N 1 2 ( z ) 1 τ 2 + [ σ em ( λ P ) + σ abs ( λ P ) ] φ P ,
N 0 ( z ) = N d [ N 1 ( z ) + N 2 ( z ) ] ,
A = W ETU τ 2 W ETU σ abs ( λ S ) φ S ( z ) τ 2 { 1 τ 2 + [ σ em ( λ P ) + σ abs ( λ P ) ] φ P ( z ) } 2 W ETU ,
B = σ abs ( λ P ) φ P ( z ) τ 2 { 1 τ 2 + [ σ em ( λ P ) + σ abs ( λ P ) ] φ P ( z ) } 1 τ 1 [ σ em ( λ S ) + σ abs ( λ S ) ] φ S ( z ) ,
C = N d σ abs ( λ S ) φ S ( z ) N d σ abs ( λ P ) φ P ( z ) [ τ 2 σ abs ( λ S ) φ S ( z ) 1 ] τ 2 { 1 τ 2 + [ σ em ( λ P ) + σ abs ( λ P ) ] φ P ( z ) } .
P P S ( r , z ) = P P S , Total ( z ) [ 1 exp ( 2 r 2 w 2 ) ] ,
I P S ( r , z ) = P P S ( r + Δ r , z ) P P S ( r , z ) π ( r + Δ r ) 2 π r 2 = P P S , Total ( z ) [ exp ( 2 r 2 w 2 ) exp ( 2 ( r + Δ r ) 2 w 2 ) ] π ( r + Δ r ) 2 π r 2 .

Metrics