Abstract

We experimentally demonstrate switching of the transmission of a nanosecond optical pulse in a nonlinear Bragg grating cavity. The grating is designed with a π phase-shift in the center, which forms the cavity and enhances intensity by a factor of 45. For a high-intensity input pulse detuned from the resonance, we observe significant temporal reshaping of the output pulse: the output waveform becomes asymmetric with a sharp leading edge and an extended tail. Although the nonlinearity of a silica glass is ultrafast, the time scale of dynamic effects is determined by the linear and nonlinear cavity response times, which are tens of picoseconds. More generally, the asymmetric pulse shape such as the one presented here is expected to be a feature of all-optical self-switches based on high finesse cavities.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
    [Crossref]
  2. C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: A numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
    [Crossref] [PubMed]
  3. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg grating,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
    [Crossref]
  4. C. J. Herbert and M. S. Malcuit, “Optical bistability in nonlinear periodic structures,” Opt. Lett. 18, 1783–1785 (1993).
    [Crossref] [PubMed]
  5. H. M. Gibbs, Optical Bistability (Academic, 1985).
  6. Yosia, Y. Akano, K. Tamura, T. Mizumoto, and S. Ping, “All-optical transistor operation based on the bistability principle in nonlinear distributed GAInAsP-InP waveguide: a transient perspective,” J. Opt. Soc. Am. B 24, 1584–1588 (2007).
    [Crossref]
  7. D. Pelinovsky, J. Sears, L. Brzozowski, and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structure. I. Analysis,” J. Opt. Soc. Am. B 19, 43–53 (2002).
    [Crossref]
  8. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
    [Crossref] [PubMed]
  9. S. Larochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
    [Crossref]
  10. J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibers by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
    [Crossref]
  11. S. Radic, N. George, and G. P. Agrawal, “Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures,” J. Opt. Soc. Am. B 12, 671–680 (1995).
    [Crossref]
  12. S. Radic, N. George, and G. P. Agrawal, “Optical switching in λ/4-shifted nonlinear periodic structures,” Opt. Lett. 19, 1789–1791 (1994).
    [Crossref] [PubMed]
  13. H. Lee and G. P. Agrawal, “Nonlinear switching of optical pulses in fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 508–515 (2003).
    [Crossref]
  14. I. V. Kabakova, C. M. de Sterke, and B. J. Eggleton, “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27, 1343–1352 (2010).
    [Crossref]
  15. R. P. Stanley, R. Houdre, U. Oesterle, and M. Ilegems, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246–2250 (1993).
    [Crossref] [PubMed]
  16. I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton, “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 17, 5083–5089 (2009).
    [Crossref] [PubMed]
  17. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
    [Crossref]
  18. A. E. Bieber, T. G. Brown, and R. C. Tiberio, “Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors,” Opt. Lett. 20, 2216–2218 (1995).
    [Crossref] [PubMed]
  19. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
    [Crossref]
  20. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  21. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  22. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
    [Crossref]
  23. M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23, 1323–1331 (2006).
    [Crossref]
  24. I. C. M. Littler, T. Grujic, and B. J. Eggleton, “Photothermal effects in fiber Bragg gratings,” Appl. Opt. 45, 4679–4685 (2006).
    [Crossref] [PubMed]
  25. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap soliton,” Nat. Phys. 2, 775–780 (2006).
    [Crossref]
  26. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412 (1991).
    [Crossref]

2010 (1)

2009 (1)

2007 (1)

2006 (3)

2003 (2)

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

H. Lee and G. P. Agrawal, “Nonlinear switching of optical pulses in fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 508–515 (2003).
[Crossref]

2002 (1)

2000 (1)

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[Crossref]

1999 (1)

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

1997 (1)

1995 (2)

1994 (3)

S. Radic, N. George, and G. P. Agrawal, “Optical switching in λ/4-shifted nonlinear periodic structures,” Opt. Lett. 19, 1789–1791 (1994).
[Crossref] [PubMed]

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibers by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

1993 (2)

R. P. Stanley, R. Houdre, U. Oesterle, and M. Ilegems, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246–2250 (1993).
[Crossref] [PubMed]

C. J. Herbert and M. S. Malcuit, “Optical bistability in nonlinear periodic structures,” Opt. Lett. 18, 1783–1785 (1993).
[Crossref] [PubMed]

1992 (1)

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

1991 (2)

1990 (2)

S. Larochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: A numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[Crossref] [PubMed]

1985 (1)

H. M. Gibbs, Optical Bistability (Academic, 1985).

1979 (1)

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Agrawal, G. P.

Akano, Y.

Baker, N. J.

Bieber, A. E.

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Bolger, J. A.

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Brown, T. G.

A. E. Bieber, T. G. Brown, and R. C. Tiberio, “Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors,” Opt. Lett. 20, 2216–2218 (1995).
[Crossref] [PubMed]

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Brzozowski, L.

Canning, J.

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibers by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
[Crossref]

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[Crossref]

Corcoran, B.

de Sterke, C. M.

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Eggleton, B. J.

Elliot, S. R.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Garmire, E.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

George, N.

Gibbs, H. M.

H. M. Gibbs, Optical Bistability (Academic, 1985).

Grujic, T.

Herbert, C. J.

Hibino, Y.

S. Larochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

Houdre, R.

R. P. Stanley, R. Houdre, U. Oesterle, and M. Ilegems, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246–2250 (1993).
[Crossref] [PubMed]

Ilegems, M.

R. P. Stanley, R. Houdre, U. Oesterle, and M. Ilegems, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246–2250 (1993).
[Crossref] [PubMed]

Jackson, K. R.

Kabakova, I. V.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Larochelle, S.

S. Larochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

Lee, H.

H. Lee and G. P. Agrawal, “Nonlinear switching of optical pulses in fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 508–515 (2003).
[Crossref]

Littler, I. C. M.

Malcuit, M. S.

Marburger, J. H.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[Crossref]

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[Crossref]

Mizrahi, V.

S. Larochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

Mizumoto, T.

Mok, J. T.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap soliton,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Moss, D. J.

Oesterle, U.

R. P. Stanley, R. Houdre, U. Oesterle, and M. Ilegems, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246–2250 (1993).
[Crossref] [PubMed]

Pelinovsky, D.

Ping, S.

Prelewitz, D. F.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Radic, S.

Robert, B. D.

Sankey, N. D.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Sargent, E. H.

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Sceats, M. G.

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibers by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
[Crossref]

Sears, J.

Shokooh-Saremi, M.

Sipe, J. E.

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: A numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[Crossref] [PubMed]

Slusher, R. E.

Stanley, R. P.

R. P. Stanley, R. Houdre, U. Oesterle, and M. Ilegems, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246–2250 (1993).
[Crossref] [PubMed]

Stegeman, G. I.

S. Larochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

Ta’eed, V. G.

Tamura, K.

Tiberio, R. C.

Winful, H. G.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Yosia,

Zakery, A.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Electron. Lett. (2)

S. Larochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibers by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Lee and G. P. Agrawal, “Nonlinear switching of optical pulses in fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 508–515 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[Crossref]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

J. Opt. Soc. Am. B (7)

Nat. Phys. (1)

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap soliton,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (2)

R. P. Stanley, R. Houdre, U. Oesterle, and M. Ilegems, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246–2250 (1993).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: A numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Other (3)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

H. M. Gibbs, Optical Bistability (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a FBG with a π phase-shift with the boundary conditions. (b) Typical transmission spectrum of a phase-shifted FBG.

Fig. 2
Fig. 2

Schematic of the experimental setup. Microchip Q-switched laser emits 1 ns pulses at 1064.3 nm. Phase-shifted fiber Bragg grating (PS FBG) is mounted on a movable stage. Transmitted signal is measured with a power meter and an optical sampling scope.

Fig. 3
Fig. 3

(a) Measured transmission spectra of the phase-shifted FBG at pulse peak power of 0.16 kW (blue curve) and 1 kW (red curve). (b) Magnified region of transmission peak in (a). λ p shows pulse wavelength tuned by 12 pm from the peak center ( λ = 1064.3   nm ) , where a total change in transmission is 4.8 dB.

Fig. 4
Fig. 4

(a) Oscilloscope measurement of transmitted pulses. Pulse powers are normalized to corresponding input peak powers of (1) 0.3 and (2) 0.9 kW. (b) Normalized output waveforms at fixed wavelength λ p and varying input peak powers from 0.16 to 2 kW. Measurement is shown on the left side, whereas simulation is on the right.

Fig. 5
Fig. 5

Transmission of CW solutions of the NLCMEs for our phase-shifted grating, calculated for the fixed wavelength of λ p shown in Fig. 3b. For input powers below the threshold P th the system stays in a low transmission state, but jumps to a high transmission state when the threshold is exceeded.

Fig. 6
Fig. 6

Analysis of output waveforms for (a) 1 and (b) 10 ns 1.5 kW peak power pulses. The reference input pulse at wavelength λ p is shown in green curve, the red curve corresponds to the output waveform according to CW approach, and the blue curve is the full time-dependent solution of the NLCMEs. The insets in (a) demonstrate intensity distribution of forward (blue curves) and backward (red curves) propagating modes at times t 1 , 2 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| E + ( z ) | = E 0   cosh ( κ ( L 2 | L 2 z | ) ) ,
| E ( z ) | = E 0   sinh ( κ ( L 2 | L 2 z | ) ) .
E ( PS ) = | E + ( L 2 ) | 2 + | E ( L 2 ) | 2 | E 0 | 2 = cosh ( κ L ) .
δ pos = π n 2 I 0 λ B sinh ( κ L ) .
I 3   dB = 2 Δ n n 2 sinh 1 ( 2 κ L ) .

Metrics