Abstract

By applying a homogenization method based on systematic full-electrodynamic complex-band-structure calculations, we deduce the effective permittivity tensor of a uniaxial photonic crystal consisting of consecutive hexagonal arrays of aligned metallic nanorods of finite length. The form of the obtained permittivity tensor over a relatively broad low-frequency region, where homogenization is applicable, suggests the occurrence of unconventional refractive behavior, namely, negative refraction and self-collimation. This behavior is corroborated by straightforward calculation of the relevant group velocities in the actual photonic crystal. Moreover, it is shown that, in the frequency region where negative refraction occurs, a finite slab of the crystal possesses eigenmodes that form flat bands outside the light cone, as many as the number of its constituent layers. These eigenmodes allow for transfer of the evanescent components of an incident wave field to the other side of the slab, thus enabling subwavelength imaging.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription