Abstract

Laser pulse shapers parameterized with frequency-domain functions lead to simple single-parameter manipulations of spectral amplitude and spectral phase that can encode Fourier-transformable information in molecular signals. The first method introduced modulates the intensity within an excitation spectrum, while the second and third methods manipulate only the spectral phase. Each method operating on an input transform limited laser pulse reveals a second-harmonic spectrum in qualitative agreement with that obtainable with a Michelson interferometer. Operating on an adaptively discovered laser pulse with a complex spectral phase, all three methods reveal a second-harmonic spectrum that captures the essential control mechanism. Finally, a recently developed visualization tool is used to give insight into how these techniques affect an oscillatory and Fourier-transformable second order signal in molecules following non-resonant two-photon absorption.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, 2000).
  2. M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, 2003).
  3. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
    [CrossRef] [PubMed]
  4. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
    [CrossRef] [PubMed]
  5. H. Rabitz and W. Zhu, “Optimal control of molecular motion: design, implementation, and inversion,” Acc. Chem. Res. 33, 572–578 (2000).
    [CrossRef] [PubMed]
  6. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
    [CrossRef]
  7. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
    [CrossRef]
  8. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
    [CrossRef]
  9. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
    [CrossRef] [PubMed]
  10. G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94, 068305 (2005).
    [CrossRef] [PubMed]
  11. E. C. Carroll, B. J. Pearson, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Spectral phase effects on nonlinear resonant photochemistry of 1,3-cyclohexadiene in solution,” J. Chem. Phys. 124, 114506 (2006).
    [CrossRef] [PubMed]
  12. B. Dietzek, B. Bruggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97, 258301 (2006).
    [CrossRef]
  13. V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006).
    [CrossRef] [PubMed]
  14. B. Dietzek, B. Brueggemann, P. Persson, and A. Yartsev, “On the excited-state multi-dimensionality in cyanines,” Chem. Phys. Lett. 455, 13–19 (2008).
    [CrossRef]
  15. B. Dietzek, B. Brueggemann, T. Pascher, and A. Yartsev, “Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye,” J. Am. Chem. Soc. 129, 13014–13021 (2007).
    [CrossRef] [PubMed]
  16. E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112, 6811–6822 (2008).
    [CrossRef] [PubMed]
  17. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
    [CrossRef] [PubMed]
  18. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
    [CrossRef] [PubMed]
  19. T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–892 (2003).
    [CrossRef]
  20. J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005).
    [CrossRef] [PubMed]
  21. V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, “Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study,” J. Chem. Phys. 122, 184502 (2005).
    [CrossRef] [PubMed]
  22. W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6, 850–857 (2005).
    [CrossRef] [PubMed]
  23. M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “A general method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
    [CrossRef] [PubMed]
  24. T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, “Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy,” J. Photochem. Photobiol., A 180, 314–321 (2006).
    [CrossRef]
  25. M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
    [CrossRef] [PubMed]
  26. M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
    [CrossRef] [PubMed]
  27. L. Bonacina, J. Extermann, A. Rondi, V. Boutou, and J. P. Wolf, “Multiobjective genetic approach for optimal control of photoinduced processes,” Phys. Rev. A 76, 023408 (2007).
    [CrossRef]
  28. J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
    [CrossRef] [PubMed]
  29. D. G. Kuroda, C. P. Singh, Z. H. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency,” Science 326, 263–267 (2009).
    [CrossRef] [PubMed]
  30. D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
    [CrossRef] [PubMed]
  31. D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
    [CrossRef]
  32. T. C. Weinacht, J. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166–10168 (1999).
    [CrossRef]
  33. T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
    [CrossRef]
  34. D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
    [CrossRef]
  35. J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7, 3574–3579 (2005).
    [CrossRef] [PubMed]
  36. J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, “Application of feedback-controlled pulse shaping for control of CARS spectra: the role of phase and amplitude modulation,” J. Raman Spectrosc. 38, 1006–1021 (2007).
    [CrossRef]
  37. J. Konradi, A. Gaal, A. Scaria, V. Namboodiri, and A. Materny, “Influence of electronic resonances on mode selective excitation with tailored laser pulses,” J. Phys. Chem. A 112, 1380–1391 (2008).
    [CrossRef] [PubMed]
  38. M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
    [CrossRef] [PubMed]
  39. S. D. Clow, U. C. Hölscher, and T. C. Weinacht, “Achieving ‘perfect’ molecular discrimination via coherent control and stimulated emission,” New J. Phys. 11, 115007 (2009).
    [CrossRef]
  40. M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “Robust basis functions for control from dimension reduction of adaptive pulse-shaping experiments,” in Ultrafast Phenomena XV, R.J. D.Miller, A.M.Weiner, P.Corcum, and D.M.Jonas, eds. (Springer-Verlag, 2006), pp. 255–257.
  41. J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399–L405 (2004).
    [CrossRef]
  42. H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
    [CrossRef] [PubMed]
  43. F. Langhojer, D. Cardoza, M. Baertschy, and T. Weinacht, “Gaining mechanistic insight from closed loop learning control: The importance of basis in searching the phase space,” J. Chem. Phys. 122, 014102 (2005).
    [CrossRef]
  44. A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
    [CrossRef]
  45. R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Rabitz, “Learning from learning algorithms: Application to attosecond dynamics of high-harmonic generation,” Phys. Rev. A 70, 043404 (2004).
    [CrossRef]
  46. A. Pelzer, S. Ramakrishna, and T. Seideman, “Optimal control of molecular alignment in dissipative media,” J. Chem. Phys. 126, 034503 (2007).
    [CrossRef] [PubMed]
  47. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular-motion,” Science 247, 1317–1319 (1990).
    [CrossRef] [PubMed]
  48. L. Dhar, J. A. Rogers, and K. A. Nelson, “Time-resolved vibrational spectroscopy in the impulsive limit,” Chem. Rev. (Washington, D.C.) 94, 157–193 (1994).
    [CrossRef]
  49. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  50. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
    [CrossRef] [PubMed]
  51. H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
    [CrossRef]
  52. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
    [CrossRef]
  53. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287 (1999).
    [CrossRef]
  54. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
    [CrossRef]
  55. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
    [CrossRef]
  56. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
    [CrossRef]
  57. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
    [CrossRef] [PubMed]
  58. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
    [CrossRef]
  59. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
    [CrossRef]
  60. S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
    [CrossRef]
  61. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110, 5196–5204 (2006).
    [CrossRef] [PubMed]
  62. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [CrossRef] [PubMed]
  63. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208–9215 (2003).
    [CrossRef]
  64. J. Hauer, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Enhancement of Raman modes by coherent control in beta-carotene,” Chem. Phys. Lett. 421, 523–528 (2006).
    [CrossRef]
  65. R. J. Levis, Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pa. (personal communication, 2009).
  66. L. G. C. Rego, L. F. Santos, and V. S. Batista, “Coherent control of quantum dynamics with sequences of unitary phase-kick pulses,” Annu. Rev. Phys. Chem. 60, 293–320 (2009).
    [CrossRef]
  67. M. Seidl, M. Etinski, C. Uiberacker, and W. Jakubetz, “Pulse-train control of branching processes: Elimination of background and intruder state population,” J. Chem. Phys. 129, 234305 (2008).
    [CrossRef] [PubMed]
  68. J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
    [CrossRef]
  69. T. Buckup, J. Hauer, C. Serrat, and M. Motzkus, “Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation,” J. Phys. B 41, 074024 (2008).
    [CrossRef]
  70. B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, “Control of electron transfer pathways in a dye-sensitized solar cell,” Phys. Rev. Lett. 97, 208301 (2006).
    [CrossRef] [PubMed]
  71. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
    [CrossRef] [PubMed]
  72. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
    [CrossRef] [PubMed]
  73. S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
    [CrossRef] [PubMed]
  74. P. E. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34, 1390–1392 (2009).
    [CrossRef] [PubMed]
  75. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17, 18788–18793 (2009).
    [CrossRef]
  76. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966–2968 (2007).
    [CrossRef] [PubMed]
  77. M. A. Montgomery and N. H. Damrauer, “A convenient method to simulate and visually represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses,” New J. Phys. 11, 105053 (2009).
    [CrossRef]
  78. E. M. Grumstrup and N. H. Damrauer are preparing a paper to be called “Time dependant perturbation theory applied to sinusoidal spectral phase modulation: insights into coherent control photophysics.”
  79. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
    [CrossRef]
  80. J. Voll and R. de Vivie-Riedle, “Pulse trains in molecular dynamics and coherent spectroscopy: a theoretical study,” New J. Phys. 11, 105036 (2009).
    [CrossRef]
  81. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).
  82. A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90, 427–430 (2008).
    [CrossRef]
  83. J. G. a. M. Proakis and G. Dimitris, Digital Signal Processing, 2nd ed. (Macmillan, 1992).
  84. D. Pestov, V. V. Lozovoy, and M. Dantus, “Multiple independent comb shaping (MICS): phase-only generation of optical pulse sequences,” Opt. Express 17, 14351–14361 (2009).
    [CrossRef] [PubMed]
  85. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, “Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector,” Opt. Lett. 28, 278–280 (2003).
    [CrossRef] [PubMed]
  86. T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
    [CrossRef]
  87. P. van der Walle, M. T. W. Milder, L. Kuipers, and J. L. Herek, “Quantum control experiment reveals solvation-induced decoherence,” Proc. Natl. Acad. Sci. U.S.A. 106, 7714–7717 (2009).
    [CrossRef] [PubMed]
  88. G. Katz, M. A. Ratner, and R. Kosloff, “Control by decoherence: weak field control of an excited state objective,” New J. Phys. 12, 015003 (2010).
    [CrossRef]
  89. A. Mitra and H. Rabitz, “Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding,” Phys. Rev. A 67, 033407 (2003).
    [CrossRef]
  90. A. Mitra and H. Rabitz, “Mechanistic analysis of optimal dynamic discrimination of similar quantum systems,” J. Phys. Chem. A 108, 4778–4785 (2004).
    [CrossRef]
  91. R. Sharp, A. Mitra, and H. Rabitz, “Principles for determining mechanistic pathways from observable quantum control data,” J. Math. Chem. 44, 142–171 (2008).
    [CrossRef]
  92. V. Beltrani, P. Ghosh, and H. Rabitz, “Exploring the capabilities of quantum optimal dynamic discrimination,” J. Chem. Phys. 130, 164112 (2009).
    [CrossRef] [PubMed]
  93. S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
    [CrossRef]
  94. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [CrossRef] [PubMed]

2010 (2)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[CrossRef]

G. Katz, M. A. Ratner, and R. Kosloff, “Control by decoherence: weak field control of an excited state objective,” New J. Phys. 12, 015003 (2010).
[CrossRef]

2009 (14)

P. van der Walle, M. T. W. Milder, L. Kuipers, and J. L. Herek, “Quantum control experiment reveals solvation-induced decoherence,” Proc. Natl. Acad. Sci. U.S.A. 106, 7714–7717 (2009).
[CrossRef] [PubMed]

D. Pestov, V. V. Lozovoy, and M. Dantus, “Multiple independent comb shaping (MICS): phase-only generation of optical pulse sequences,” Opt. Express 17, 14351–14361 (2009).
[CrossRef] [PubMed]

J. Voll and R. de Vivie-Riedle, “Pulse trains in molecular dynamics and coherent spectroscopy: a theoretical study,” New J. Phys. 11, 105036 (2009).
[CrossRef]

M. A. Montgomery and N. H. Damrauer, “A convenient method to simulate and visually represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses,” New J. Phys. 11, 105053 (2009).
[CrossRef]

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

P. E. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34, 1390–1392 (2009).
[CrossRef] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17, 18788–18793 (2009).
[CrossRef]

V. Beltrani, P. Ghosh, and H. Rabitz, “Exploring the capabilities of quantum optimal dynamic discrimination,” J. Chem. Phys. 130, 164112 (2009).
[CrossRef] [PubMed]

D. G. Kuroda, C. P. Singh, Z. H. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency,” Science 326, 263–267 (2009).
[CrossRef] [PubMed]

D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
[CrossRef]

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

S. D. Clow, U. C. Hölscher, and T. C. Weinacht, “Achieving ‘perfect’ molecular discrimination via coherent control and stimulated emission,” New J. Phys. 11, 115007 (2009).
[CrossRef]

R. J. Levis, Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pa. (personal communication, 2009).

L. G. C. Rego, L. F. Santos, and V. S. Batista, “Coherent control of quantum dynamics with sequences of unitary phase-kick pulses,” Annu. Rev. Phys. Chem. 60, 293–320 (2009).
[CrossRef]

2008 (10)

M. Seidl, M. Etinski, C. Uiberacker, and W. Jakubetz, “Pulse-train control of branching processes: Elimination of background and intruder state population,” J. Chem. Phys. 129, 234305 (2008).
[CrossRef] [PubMed]

T. Buckup, J. Hauer, C. Serrat, and M. Motzkus, “Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation,” J. Phys. B 41, 074024 (2008).
[CrossRef]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[CrossRef]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

J. Konradi, A. Gaal, A. Scaria, V. Namboodiri, and A. Materny, “Influence of electronic resonances on mode selective excitation with tailored laser pulses,” J. Phys. Chem. A 112, 1380–1391 (2008).
[CrossRef] [PubMed]

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

B. Dietzek, B. Brueggemann, P. Persson, and A. Yartsev, “On the excited-state multi-dimensionality in cyanines,” Chem. Phys. Lett. 455, 13–19 (2008).
[CrossRef]

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112, 6811–6822 (2008).
[CrossRef] [PubMed]

R. Sharp, A. Mitra, and H. Rabitz, “Principles for determining mechanistic pathways from observable quantum control data,” J. Math. Chem. 44, 142–171 (2008).
[CrossRef]

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90, 427–430 (2008).
[CrossRef]

2007 (10)

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966–2968 (2007).
[CrossRef] [PubMed]

B. Dietzek, B. Brueggemann, T. Pascher, and A. Yartsev, “Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye,” J. Am. Chem. Soc. 129, 13014–13021 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[CrossRef] [PubMed]

L. Bonacina, J. Extermann, A. Rondi, V. Boutou, and J. P. Wolf, “Multiobjective genetic approach for optimal control of photoinduced processes,” Phys. Rev. A 76, 023408 (2007).
[CrossRef]

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[CrossRef] [PubMed]

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, “Application of feedback-controlled pulse shaping for control of CARS spectra: the role of phase and amplitude modulation,” J. Raman Spectrosc. 38, 1006–1021 (2007).
[CrossRef]

A. Pelzer, S. Ramakrishna, and T. Seideman, “Optimal control of molecular alignment in dissipative media,” J. Chem. Phys. 126, 034503 (2007).
[CrossRef] [PubMed]

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

2006 (10)

B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, “Control of electron transfer pathways in a dye-sensitized solar cell,” Phys. Rev. Lett. 97, 208301 (2006).
[CrossRef] [PubMed]

J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
[CrossRef]

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110, 5196–5204 (2006).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “Robust basis functions for control from dimension reduction of adaptive pulse-shaping experiments,” in Ultrafast Phenomena XV, R.J. D.Miller, A.M.Weiner, P.Corcum, and D.M.Jonas, eds. (Springer-Verlag, 2006), pp. 255–257.

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “A general method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
[CrossRef] [PubMed]

T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, “Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy,” J. Photochem. Photobiol., A 180, 314–321 (2006).
[CrossRef]

E. C. Carroll, B. J. Pearson, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Spectral phase effects on nonlinear resonant photochemistry of 1,3-cyclohexadiene in solution,” J. Chem. Phys. 124, 114506 (2006).
[CrossRef] [PubMed]

B. Dietzek, B. Bruggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97, 258301 (2006).
[CrossRef]

V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006).
[CrossRef] [PubMed]

J. Hauer, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Enhancement of Raman modes by coherent control in beta-carotene,” Chem. Phys. Lett. 421, 523–528 (2006).
[CrossRef]

2005 (8)

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94, 068305 (2005).
[CrossRef] [PubMed]

J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005).
[CrossRef] [PubMed]

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, “Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study,” J. Chem. Phys. 122, 184502 (2005).
[CrossRef] [PubMed]

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6, 850–857 (2005).
[CrossRef] [PubMed]

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7, 3574–3579 (2005).
[CrossRef] [PubMed]

F. Langhojer, D. Cardoza, M. Baertschy, and T. Weinacht, “Gaining mechanistic insight from closed loop learning control: The importance of basis in searching the phase space,” J. Chem. Phys. 122, 014102 (2005).
[CrossRef]

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

2004 (5)

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Rabitz, “Learning from learning algorithms: Application to attosecond dynamics of high-harmonic generation,” Phys. Rev. A 70, 043404 (2004).
[CrossRef]

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399–L405 (2004).
[CrossRef]

H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

A. Mitra and H. Rabitz, “Mechanistic analysis of optimal dynamic discrimination of similar quantum systems,” J. Phys. Chem. A 108, 4778–4785 (2004).
[CrossRef]

2003 (9)

A. Mitra and H. Rabitz, “Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding,” Phys. Rev. A 67, 033407 (2003).
[CrossRef]

A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, “Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector,” Opt. Lett. 28, 278–280 (2003).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef] [PubMed]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208–9215 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–892 (2003).
[CrossRef]

M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, 2003).

2002 (4)

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[CrossRef] [PubMed]

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

2001 (1)

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

2000 (5)

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, 2000).

H. Rabitz and W. Zhu, “Optimal control of molecular motion: design, implementation, and inversion,” Acc. Chem. Res. 33, 572–578 (2000).
[CrossRef] [PubMed]

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1999 (3)

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287 (1999).
[CrossRef]

T. C. Weinacht, J. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166–10168 (1999).
[CrossRef]

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

1998 (2)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

1997 (3)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
[CrossRef]

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

1996 (1)

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

1995 (1)

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

1994 (1)

L. Dhar, J. A. Rogers, and K. A. Nelson, “Time-resolved vibrational spectroscopy in the impulsive limit,” Chem. Rev. (Washington, D.C.) 94, 157–193 (1994).
[CrossRef]

1992 (2)

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

J. G. a. M. Proakis and G. Dimitris, Digital Signal Processing, 2nd ed. (Macmillan, 1992).

1990 (2)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular-motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

Alexandrou, A.

Andegeko, Y.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Baertschy, M.

F. Langhojer, D. Cardoza, M. Baertschy, and T. Weinacht, “Gaining mechanistic insight from closed loop learning control: The importance of basis in searching the phase space,” J. Chem. Phys. 122, 014102 (2005).
[CrossRef]

Bardeen, C. J.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Bartels, R. A.

R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Rabitz, “Learning from learning algorithms: Application to attosecond dynamics of high-harmonic generation,” Phys. Rev. A 70, 043404 (2004).
[CrossRef]

Bartelt, A. F.

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

Batista, V. S.

L. G. C. Rego, L. F. Santos, and V. S. Batista, “Coherent control of quantum dynamics with sequences of unitary phase-kick pulses,” Annu. Rev. Phys. Chem. 60, 293–320 (2009).
[CrossRef]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Beltrani, V.

V. Beltrani, P. Ghosh, and H. Rabitz, “Exploring the capabilities of quantum optimal dynamic discrimination,” J. Chem. Phys. 130, 164112 (2009).
[CrossRef] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Birge, R. R.

V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006).
[CrossRef] [PubMed]

Bonacina, L.

L. Bonacina, J. Extermann, A. Rondi, V. Boutou, and J. P. Wolf, “Multiobjective genetic approach for optimal control of photoinduced processes,” Phys. Rev. A 76, 023408 (2007).
[CrossRef]

Borukhovich, I.

Boutou, V.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

L. Bonacina, J. Extermann, A. Rondi, V. Boutou, and J. P. Wolf, “Multiobjective genetic approach for optimal control of photoinduced processes,” Phys. Rev. A 76, 023408 (2007).
[CrossRef]

Brixner, T.

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–892 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Brown, L. S.

V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006).
[CrossRef] [PubMed]

Brueggemann, B.

B. Dietzek, B. Brueggemann, P. Persson, and A. Yartsev, “On the excited-state multi-dimensionality in cyanines,” Chem. Phys. Lett. 455, 13–19 (2008).
[CrossRef]

B. Dietzek, B. Brueggemann, T. Pascher, and A. Yartsev, “Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye,” J. Am. Chem. Soc. 129, 13014–13021 (2007).
[CrossRef] [PubMed]

Bruggemann, B.

B. Dietzek, B. Bruggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97, 258301 (2006).
[CrossRef]

B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, “Control of electron transfer pathways in a dye-sensitized solar cell,” Phys. Rev. Lett. 97, 208301 (2006).
[CrossRef] [PubMed]

Brumer, P.

M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, 2003).

Bucksbaum, P. H.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112, 6811–6822 (2008).
[CrossRef] [PubMed]

E. C. Carroll, B. J. Pearson, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Spectral phase effects on nonlinear resonant photochemistry of 1,3-cyclohexadiene in solution,” J. Chem. Phys. 124, 114506 (2006).
[CrossRef] [PubMed]

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399–L405 (2004).
[CrossRef]

T. C. Weinacht, J. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166–10168 (1999).
[CrossRef]

Buckup, T.

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

T. Buckup, J. Hauer, C. Serrat, and M. Motzkus, “Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation,” J. Phys. B 41, 074024 (2008).
[CrossRef]

J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
[CrossRef]

T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, “Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy,” J. Photochem. Photobiol., A 180, 314–321 (2006).
[CrossRef]

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6, 850–857 (2005).
[CrossRef] [PubMed]

Busch, F.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

Cardoza, D.

F. Langhojer, D. Cardoza, M. Baertschy, and T. Weinacht, “Gaining mechanistic insight from closed loop learning control: The importance of basis in searching the phase space,” J. Chem. Phys. 122, 014102 (2005).
[CrossRef]

Carpenter, S. D.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Carroll, E. C.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112, 6811–6822 (2008).
[CrossRef] [PubMed]

E. C. Carroll, B. J. Pearson, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Spectral phase effects on nonlinear resonant photochemistry of 1,3-cyclohexadiene in solution,” J. Chem. Phys. 124, 114506 (2006).
[CrossRef] [PubMed]

Caster, A. G.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110, 5196–5204 (2006).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Chatel, B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[CrossRef]

Chen, T.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

Christov, I.

R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Rabitz, “Learning from learning algorithms: Application to attosecond dynamics of high-harmonic generation,” Phys. Rev. A 70, 043404 (2004).
[CrossRef]

Clow, S. D.

S. D. Clow, U. C. Hölscher, and T. C. Weinacht, “Achieving ‘perfect’ molecular discrimination via coherent control and stimulated emission,” New J. Phys. 11, 115007 (2009).
[CrossRef]

Coello, Y.

Cogdell, R. J.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[CrossRef] [PubMed]

Courvoisier, F.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Damrauer, N. H.

M. A. Montgomery and N. H. Damrauer, “A convenient method to simulate and visually represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses,” New J. Phys. 11, 105053 (2009).
[CrossRef]

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[CrossRef] [PubMed]

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “A general method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “Robust basis functions for control from dimension reduction of adaptive pulse-shaping experiments,” in Ultrafast Phenomena XV, R.J. D.Miller, A.M.Weiner, P.Corcum, and D.M.Jonas, eds. (Springer-Verlag, 2006), pp. 255–257.

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–892 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

E. M. Grumstrup and N. H. Damrauer are preparing a paper to be called “Time dependant perturbation theory applied to sinusoidal spectral phase modulation: insights into coherent control photophysics.”

Dantus, M.

D. Pestov, V. V. Lozovoy, and M. Dantus, “Multiple independent comb shaping (MICS): phase-only generation of optical pulse sequences,” Opt. Express 17, 14351–14361 (2009).
[CrossRef] [PubMed]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[CrossRef]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

de Vivie-Riedle, R.

J. Voll and R. de Vivie-Riedle, “Pulse trains in molecular dynamics and coherent spectroscopy: a theoretical study,” New J. Phys. 11, 105036 (2009).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

DeFlores, L. P.

Dela Cruz, J. M.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[CrossRef] [PubMed]

Dhar, L.

L. Dhar, J. A. Rogers, and K. A. Nelson, “Time-resolved vibrational spectroscopy in the impulsive limit,” Chem. Rev. (Washington, D.C.) 94, 157–193 (1994).
[CrossRef]

Diels, J. C.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

Dietzek, B.

B. Dietzek, B. Brueggemann, P. Persson, and A. Yartsev, “On the excited-state multi-dimensionality in cyanines,” Chem. Phys. Lett. 455, 13–19 (2008).
[CrossRef]

B. Dietzek, B. Brueggemann, T. Pascher, and A. Yartsev, “Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye,” J. Am. Chem. Soc. 129, 13014–13021 (2007).
[CrossRef] [PubMed]

B. Dietzek, B. Bruggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97, 258301 (2006).
[CrossRef]

Dijkhuizen, N.

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

Dimitris, G.

J. G. a. M. Proakis and G. Dimitris, Digital Signal Processing, 2nd ed. (Macmillan, 1992).

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208–9215 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Etinski, M.

M. Seidl, M. Etinski, C. Uiberacker, and W. Jakubetz, “Pulse-train control of branching processes: Elimination of background and intruder state population,” J. Chem. Phys. 129, 234305 (2008).
[CrossRef] [PubMed]

Extermann, J.

L. Bonacina, J. Extermann, A. Rondi, V. Boutou, and J. P. Wolf, “Multiobjective genetic approach for optimal control of photoinduced processes,” Phys. Rev. A 76, 023408 (2007).
[CrossRef]

Faeder, S. M.

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

Fanciulli, R.

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

Feurer, T.

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90, 427–430 (2008).
[CrossRef]

Florean, A. C.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112, 6811–6822 (2008).
[CrossRef] [PubMed]

E. C. Carroll, B. J. Pearson, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Spectral phase effects on nonlinear resonant photochemistry of 1,3-cyclohexadiene in solution,” J. Chem. Phys. 124, 114506 (2006).
[CrossRef] [PubMed]

Frey, S.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

Gaal, A.

J. Konradi, A. Gaal, A. Scaria, V. Namboodiri, and A. Materny, “Influence of electronic resonances on mode selective excitation with tailored laser pulses,” J. Phys. Chem. A 112, 1380–1391 (2008).
[CrossRef] [PubMed]

Galler, A.

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90, 427–430 (2008).
[CrossRef]

Gerber, G.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94, 068305 (2005).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–892 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Ghosh, P.

V. Beltrani, P. Ghosh, and H. Rabitz, “Exploring the capabilities of quantum optimal dynamic discrimination,” J. Chem. Phys. 130, 164112 (2009).
[CrossRef] [PubMed]

Grumstrup, E. M.

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[CrossRef] [PubMed]

E. M. Grumstrup and N. H. Damrauer are preparing a paper to be called “Time dependant perturbation theory applied to sinusoidal spectral phase modulation: insights into coherent control photophysics.”

Gunaratne, T. C.

Guyon, L.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Hauer, J.

T. Buckup, J. Hauer, C. Serrat, and M. Motzkus, “Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation,” J. Phys. B 41, 074024 (2008).
[CrossRef]

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
[CrossRef]

J. Hauer, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Enhancement of Raman modes by coherent control in beta-carotene,” Chem. Phys. Lett. 421, 523–528 (2006).
[CrossRef]

Herek, J. L.

P. van der Walle, M. T. W. Milder, L. Kuipers, and J. L. Herek, “Quantum control experiment reveals solvation-induced decoherence,” Proc. Natl. Acad. Sci. U.S.A. 106, 7714–7717 (2009).
[CrossRef] [PubMed]

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6, 850–857 (2005).
[CrossRef] [PubMed]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[CrossRef] [PubMed]

Herzog, R.

Hölscher, U. C.

S. D. Clow, U. C. Hölscher, and T. C. Weinacht, “Achieving ‘perfect’ molecular discrimination via coherent control and stimulated emission,” New J. Phys. 11, 115007 (2009).
[CrossRef]

Hornung, T.

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[CrossRef]

Hsieh, M. M.

H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

Jakubetz, W.

M. Seidl, M. Etinski, C. Uiberacker, and W. Jakubetz, “Pulse-train control of branching processes: Elimination of background and intruder state population,” J. Chem. Phys. 129, 234305 (2008).
[CrossRef] [PubMed]

Joffre, M.

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef] [PubMed]

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

Judson, R. S.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

Kaplan, D.

Kapteyn, H. C.

R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Rabitz, “Learning from learning algorithms: Application to attosecond dynamics of high-harmonic generation,” Phys. Rev. A 70, 043404 (2004).
[CrossRef]

Katz, G.

G. Katz, M. A. Ratner, and R. Kosloff, “Control by decoherence: weak field control of an excited state objective,” New J. Phys. 12, 015003 (2010).
[CrossRef]

Kawashima, H.

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

Kiefer, B.

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Kiefer, W.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

Kleiman, V. D.

D. G. Kuroda, C. P. Singh, Z. H. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency,” Science 326, 263–267 (2009).
[CrossRef] [PubMed]

Kompa, K.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

Kompa, K. L.

J. Hauer, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Enhancement of Raman modes by coherent control in beta-carotene,” Chem. Phys. Lett. 421, 523–528 (2006).
[CrossRef]

Konradi, J.

J. Konradi, A. Gaal, A. Scaria, V. Namboodiri, and A. Materny, “Influence of electronic resonances on mode selective excitation with tailored laser pulses,” J. Phys. Chem. A 112, 1380–1391 (2008).
[CrossRef] [PubMed]

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, “Application of feedback-controlled pulse shaping for control of CARS spectra: the role of phase and amplitude modulation,” J. Raman Spectrosc. 38, 1006–1021 (2007).
[CrossRef]

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7, 3574–3579 (2005).
[CrossRef] [PubMed]

Kosloff, R.

G. Katz, M. A. Ratner, and R. Kosloff, “Control by decoherence: weak field control of an excited state objective,” New J. Phys. 12, 015003 (2010).
[CrossRef]

Krampert, G.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94, 068305 (2005).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–892 (2003).
[CrossRef]

Kubarych, K. J.

Kuipers, L.

P. van der Walle, M. T. W. Milder, L. Kuipers, and J. L. Herek, “Quantum control experiment reveals solvation-induced decoherence,” Proc. Natl. Acad. Sci. U.S.A. 106, 7714–7717 (2009).
[CrossRef] [PubMed]

Kuroda, D. G.

D. G. Kuroda, C. P. Singh, Z. H. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency,” Science 326, 263–267 (2009).
[CrossRef] [PubMed]

Langhojer, F.

F. Langhojer, D. Cardoza, M. Baertschy, and T. Weinacht, “Gaining mechanistic insight from closed loop learning control: The importance of basis in searching the phase space,” J. Chem. Phys. 122, 014102 (2005).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular-motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

Lebold, T.

T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, “Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy,” J. Photochem. Photobiol., A 180, 314–321 (2006).
[CrossRef]

Leone, S. R.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110, 5196–5204 (2006).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Levis, R. J.

R. J. Levis, Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pa. (personal communication, 2009).

Lewis, K. L. M.

Lim, S. H.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110, 5196–5204 (2006).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Lindinger, A.

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Lozovoy, V. V.

D. Pestov, V. V. Lozovoy, and M. Dantus, “Multiple independent comb shaping (MICS): phase-only generation of optical pulse sequences,” Opt. Express 17, 14351–14361 (2009).
[CrossRef] [PubMed]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

Lupulescu, C.

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

Materny, A.

J. Konradi, A. Gaal, A. Scaria, V. Namboodiri, and A. Materny, “Influence of electronic resonances on mode selective excitation with tailored laser pulses,” J. Phys. Chem. A 112, 1380–1391 (2008).
[CrossRef] [PubMed]

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, “Application of feedback-controlled pulse shaping for control of CARS spectra: the role of phase and amplitude modulation,” J. Raman Spectrosc. 38, 1006–1021 (2007).
[CrossRef]

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7, 3574–3579 (2005).
[CrossRef] [PubMed]

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

Matsika, S.

Meglen, R. R.

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “A general method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “Robust basis functions for control from dimension reduction of adaptive pulse-shaping experiments,” in Ultrafast Phenomena XV, R.J. D.Miller, A.M.Weiner, P.Corcum, and D.M.Jonas, eds. (Springer-Verlag, 2006), pp. 255–257.

Meier, R.

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[CrossRef]

Merli, A.

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287 (1999).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
[CrossRef]

Middleton, C. T.

D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
[CrossRef]

Milder, M. T. W.

P. van der Walle, M. T. W. Milder, L. Kuipers, and J. L. Herek, “Quantum control experiment reveals solvation-induced decoherence,” Proc. Natl. Acad. Sci. U.S.A. 106, 7714–7717 (2009).
[CrossRef] [PubMed]

Miller, R. J. D.

V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006).
[CrossRef] [PubMed]

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, “Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study,” J. Chem. Phys. 122, 184502 (2005).
[CrossRef] [PubMed]

Mitra, A.

R. Sharp, A. Mitra, and H. Rabitz, “Principles for determining mechanistic pathways from observable quantum control data,” J. Math. Chem. 44, 142–171 (2008).
[CrossRef]

A. Mitra and H. Rabitz, “Mechanistic analysis of optimal dynamic discrimination of similar quantum systems,” J. Phys. Chem. A 108, 4778–4785 (2004).
[CrossRef]

A. Mitra and H. Rabitz, “Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding,” Phys. Rev. A 67, 033407 (2003).
[CrossRef]

Monmayrant, A.

Montgomery, M. A.

M. A. Montgomery and N. H. Damrauer, “A convenient method to simulate and visually represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses,” New J. Phys. 11, 105053 (2009).
[CrossRef]

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[CrossRef] [PubMed]

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “A general method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “Robust basis functions for control from dimension reduction of adaptive pulse-shaping experiments,” in Ultrafast Phenomena XV, R.J. D.Miller, A.M.Weiner, P.Corcum, and D.M.Jonas, eds. (Springer-Verlag, 2006), pp. 255–257.

Moore, A. L.

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

Motzkus, M.

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

T. Buckup, J. Hauer, C. Serrat, and M. Motzkus, “Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation,” J. Phys. B 41, 074024 (2008).
[CrossRef]

J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
[CrossRef]

J. Hauer, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Enhancement of Raman modes by coherent control in beta-carotene,” Chem. Phys. Lett. 421, 523–528 (2006).
[CrossRef]

T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, “Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy,” J. Photochem. Photobiol., A 180, 314–321 (2006).
[CrossRef]

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6, 850–857 (2005).
[CrossRef] [PubMed]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[CrossRef] [PubMed]

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

Murnane, M. M.

R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Rabitz, “Learning from learning algorithms: Application to attosecond dynamics of high-harmonic generation,” Phys. Rev. A 70, 043404 (2004).
[CrossRef]

Myers, J. A.

Nagy, A. M.

V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006).
[CrossRef] [PubMed]

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, “Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study,” J. Chem. Phys. 122, 184502 (2005).
[CrossRef] [PubMed]

Namboodiri, V.

J. Konradi, A. Gaal, A. Scaria, V. Namboodiri, and A. Materny, “Influence of electronic resonances on mode selective excitation with tailored laser pulses,” J. Phys. Chem. A 112, 1380–1391 (2008).
[CrossRef] [PubMed]

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, “Application of feedback-controlled pulse shaping for control of CARS spectra: the role of phase and amplitude modulation,” J. Raman Spectrosc. 38, 1006–1021 (2007).
[CrossRef]

Nelson, K. A.

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

L. Dhar, J. A. Rogers, and K. A. Nelson, “Time-resolved vibrational spectroscopy in the impulsive limit,” Chem. Rev. (Washington, D.C.) 94, 157–193 (1994).
[CrossRef]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular-motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

Nicodemus, R. A.

Nicolet, O.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110, 5196–5204 (2006).
[CrossRef] [PubMed]

Niklaus, P.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94, 068305 (2005).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–892 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Nuernberger, P.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94, 068305 (2005).
[CrossRef] [PubMed]

Ogilvie, J. P.

Oksenhendler, T.

Organero, J. A.

B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, “Control of electron transfer pathways in a dye-sensitized solar cell,” Phys. Rev. Lett. 97, 208301 (2006).
[CrossRef] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208–9215 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Pascher, T.

B. Dietzek, B. Brueggemann, T. Pascher, and A. Yartsev, “Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye,” J. Am. Chem. Soc. 129, 13014–13021 (2007).
[CrossRef] [PubMed]

B. Dietzek, B. Bruggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97, 258301 (2006).
[CrossRef]

B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, “Control of electron transfer pathways in a dye-sensitized solar cell,” Phys. Rev. Lett. 97, 208301 (2006).
[CrossRef] [PubMed]

Pastirk, I.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

Patel, J. S.

Pearson, B. J.

E. C. Carroll, B. J. Pearson, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Spectral phase effects on nonlinear resonant photochemistry of 1,3-cyclohexadiene in solution,” J. Chem. Phys. 124, 114506 (2006).
[CrossRef] [PubMed]

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399–L405 (2004).
[CrossRef]

Pelzer, A.

A. Pelzer, S. Ramakrishna, and T. Seideman, “Optimal control of molecular alignment in dissipative media,” J. Chem. Phys. 126, 034503 (2007).
[CrossRef] [PubMed]

Peng, Z. H.

D. G. Kuroda, C. P. Singh, Z. H. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency,” Science 326, 263–267 (2009).
[CrossRef] [PubMed]

Persson, P.

B. Dietzek, B. Brueggemann, P. Persson, and A. Yartsev, “On the excited-state multi-dimensionality in cyanines,” Chem. Phys. Lett. 455, 13–19 (2008).
[CrossRef]

Pestov, D.

Plewicki, M.

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

Proakis, J. G. a. M.

J. G. a. M. Proakis and G. Dimitris, Digital Signal Processing, 2nd ed. (Macmillan, 1992).

Prokhorenko, V. I.

V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006).
[CrossRef] [PubMed]

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, “Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study,” J. Chem. Phys. 122, 184502 (2005).
[CrossRef] [PubMed]

Pullerits, T.

B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, “Control of electron transfer pathways in a dye-sensitized solar cell,” Phys. Rev. Lett. 97, 208301 (2006).
[CrossRef] [PubMed]

Rabitz, H.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

V. Beltrani, P. Ghosh, and H. Rabitz, “Exploring the capabilities of quantum optimal dynamic discrimination,” J. Chem. Phys. 130, 164112 (2009).
[CrossRef] [PubMed]

R. Sharp, A. Mitra, and H. Rabitz, “Principles for determining mechanistic pathways from observable quantum control data,” J. Math. Chem. 44, 142–171 (2008).
[CrossRef]

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Rabitz, “Learning from learning algorithms: Application to attosecond dynamics of high-harmonic generation,” Phys. Rev. A 70, 043404 (2004).
[CrossRef]

A. Mitra and H. Rabitz, “Mechanistic analysis of optimal dynamic discrimination of similar quantum systems,” J. Phys. Chem. A 108, 4778–4785 (2004).
[CrossRef]

A. Mitra and H. Rabitz, “Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding,” Phys. Rev. A 67, 033407 (2003).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

H. Rabitz and W. Zhu, “Optimal control of molecular motion: design, implementation, and inversion,” Acc. Chem. Res. 33, 572–578 (2000).
[CrossRef] [PubMed]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

Rabitz, H. A.

H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

Ramakrishna, S.

A. Pelzer, S. Ramakrishna, and T. Seideman, “Optimal control of molecular alignment in dissipative media,” J. Chem. Phys. 126, 034503 (2007).
[CrossRef] [PubMed]

Ratner, M. A.

G. Katz, M. A. Ratner, and R. Kosloff, “Control by decoherence: weak field control of an excited state objective,” New J. Phys. 12, 015003 (2010).
[CrossRef]

Rego, L. G. C.

L. G. C. Rego, L. F. Santos, and V. S. Batista, “Coherent control of quantum dynamics with sequences of unitary phase-kick pulses,” Annu. Rev. Phys. Chem. 60, 293–320 (2009).
[CrossRef]

Rice, S. A.

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, 2000).

Rogers, J. A.

L. Dhar, J. A. Rogers, and K. A. Nelson, “Time-resolved vibrational spectroscopy in the impulsive limit,” Chem. Rev. (Washington, D.C.) 94, 157–193 (1994).
[CrossRef]

Rondi, A.

L. Bonacina, J. Extermann, A. Rondi, V. Boutou, and J. P. Wolf, “Multiobjective genetic approach for optimal control of photoinduced processes,” Phys. Rev. A 76, 023408 (2007).
[CrossRef]

Rosenthal, C. M.

H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

Roslund, J.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Roth, M.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Rudolph, W.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

Santos, L. F.

L. G. C. Rego, L. F. Santos, and V. S. Batista, “Coherent control of quantum dynamics with sequences of unitary phase-kick pulses,” Annu. Rev. Phys. Chem. 60, 293–320 (2009).
[CrossRef]

Savolainen, J.

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

Scaria, A.

J. Konradi, A. Gaal, A. Scaria, V. Namboodiri, and A. Materny, “Influence of electronic resonances on mode selective excitation with tailored laser pulses,” J. Phys. Chem. A 112, 1380–1391 (2008).
[CrossRef] [PubMed]

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, “Application of feedback-controlled pulse shaping for control of CARS spectra: the role of phase and amplitude modulation,” J. Raman Spectrosc. 38, 1006–1021 (2007).
[CrossRef]

Seideman, T.

A. Pelzer, S. Ramakrishna, and T. Seideman, “Optimal control of molecular alignment in dissipative media,” J. Chem. Phys. 126, 034503 (2007).
[CrossRef] [PubMed]

Seidl, M.

M. Seidl, M. Etinski, C. Uiberacker, and W. Jakubetz, “Pulse-train control of branching processes: Elimination of background and intruder state population,” J. Chem. Phys. 129, 234305 (2008).
[CrossRef] [PubMed]

Sension, R. J.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112, 6811–6822 (2008).
[CrossRef] [PubMed]

E. C. Carroll, B. J. Pearson, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Spectral phase effects on nonlinear resonant photochemistry of 1,3-cyclohexadiene in solution,” J. Chem. Phys. 124, 114506 (2006).
[CrossRef] [PubMed]

Serrat, C.

T. Buckup, J. Hauer, C. Serrat, and M. Motzkus, “Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation,” J. Phys. B 41, 074024 (2008).
[CrossRef]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Shapiro, M.

M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, 2003).

Sharp, R.

R. Sharp, A. Mitra, and H. Rabitz, “Principles for determining mechanistic pathways from observable quantum control data,” J. Math. Chem. 44, 142–171 (2008).
[CrossRef]

Shim, S. H.

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[CrossRef] [PubMed]

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[CrossRef] [PubMed]

Shim, S. -H.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208–9215 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287 (1999).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
[CrossRef]

Singh, A. K.

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7, 3574–3579 (2005).
[CrossRef] [PubMed]

Singh, C. P.

D. G. Kuroda, C. P. Singh, Z. H. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency,” Science 326, 263–267 (2009).
[CrossRef] [PubMed]

Skenderovic, H.

J. Hauer, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Enhancement of Raman modes by coherent control in beta-carotene,” Chem. Phys. Lett. 421, 523–528 (2006).
[CrossRef]

Strasfeld, D. B.

D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
[CrossRef]

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Tekavec, P. E.

Tokmakoff, A.

Tournois, P.

Tseng, C. H.

Uiberacker, C.

M. Seidl, M. Etinski, C. Uiberacker, and W. Jakubetz, “Pulse-train control of branching processes: Elimination of background and intruder state population,” J. Chem. Phys. 129, 234305 (2008).
[CrossRef] [PubMed]

van der Walle, P.

P. van der Walle, M. T. W. Milder, L. Kuipers, and J. L. Herek, “Quantum control experiment reveals solvation-induced decoherence,” Proc. Natl. Acad. Sci. U.S.A. 106, 7714–7717 (2009).
[CrossRef] [PubMed]

Vetter, F.

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

Vogt, G.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94, 068305 (2005).
[CrossRef] [PubMed]

Voll, J.

J. Voll and R. de Vivie-Riedle, “Pulse trains in molecular dynamics and coherent spectroscopy: a theoretical study,” New J. Phys. 11, 105036 (2009).
[CrossRef]

Walowicz, K. A.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

Warren, W. S.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Waschuk, S. A.

V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006).
[CrossRef] [PubMed]

Weber, P. M.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Weber, S.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[CrossRef]

Weber, S. M.

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

Wefers, M. M.

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

Weigel, A.

T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, “Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy,” J. Photochem. Photobiol., A 180, 314–321 (2006).
[CrossRef]

Weinacht, T.

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[CrossRef]

F. Langhojer, D. Cardoza, M. Baertschy, and T. Weinacht, “Gaining mechanistic insight from closed loop learning control: The importance of basis in searching the phase space,” J. Chem. Phys. 122, 014102 (2005).
[CrossRef]

Weinacht, T. C.

S. D. Clow, U. C. Hölscher, and T. C. Weinacht, “Achieving ‘perfect’ molecular discrimination via coherent control and stimulated emission,” New J. Phys. 11, 115007 (2009).
[CrossRef]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17, 18788–18793 (2009).
[CrossRef]

T. C. Weinacht, J. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166–10168 (1999).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular-motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

Weisel, L. R.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

White, J.

T. C. Weinacht, J. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166–10168 (1999).
[CrossRef]

White, J. L.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112, 6811–6822 (2008).
[CrossRef] [PubMed]

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399–L405 (2004).
[CrossRef]

Wiederrecht, G. P.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular-motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

Wilson, K. R.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Wohlleben, W.

T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, “Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy,” J. Photochem. Photobiol., A 180, 314–321 (2006).
[CrossRef]

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6, 850–857 (2005).
[CrossRef] [PubMed]

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[CrossRef] [PubMed]

Wolf, J. P.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

L. Bonacina, J. Extermann, A. Rondi, V. Boutou, and J. P. Wolf, “Multiobjective genetic approach for optimal control of photoinduced processes,” Phys. Rev. A 76, 023408 (2007).
[CrossRef]

Woste, L.

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

Wullert, J. R.

Xi, P.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

Xu, B. W.

Yakovlev, V. V.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Yartsev, A.

B. Dietzek, B. Brueggemann, P. Persson, and A. Yartsev, “On the excited-state multi-dimensionality in cyanines,” Chem. Phys. Lett. 455, 13–19 (2008).
[CrossRef]

B. Dietzek, B. Brueggemann, T. Pascher, and A. Yartsev, “Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye,” J. Am. Chem. Soc. 129, 13014–13021 (2007).
[CrossRef] [PubMed]

B. Dietzek, B. Bruggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97, 258301 (2006).
[CrossRef]

B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, “Control of electron transfer pathways in a dye-sensitized solar cell,” Phys. Rev. Lett. 97, 208301 (2006).
[CrossRef] [PubMed]

Yelin, D.

Zanni, M. T.

D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
[CrossRef]

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[CrossRef] [PubMed]

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[CrossRef] [PubMed]

Zeidler, D.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[CrossRef] [PubMed]

Zhao, M.

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, 2000).

Zhu, W.

H. Rabitz and W. Zhu, “Optimal control of molecular motion: design, implementation, and inversion,” Acc. Chem. Res. 33, 572–578 (2000).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

H. Rabitz and W. Zhu, “Optimal control of molecular motion: design, implementation, and inversion,” Acc. Chem. Res. 33, 572–578 (2000).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (3)

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

L. G. C. Rego, L. F. Santos, and V. S. Batista, “Coherent control of quantum dynamics with sequences of unitary phase-kick pulses,” Annu. Rev. Phys. Chem. 60, 293–320 (2009).
[CrossRef]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef] [PubMed]

Appl. Phys. B (2)

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90, 427–430 (2008).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Chem. Phys. Lett. (4)

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

B. Dietzek, B. Brueggemann, P. Persson, and A. Yartsev, “On the excited-state multi-dimensionality in cyanines,” Chem. Phys. Lett. 455, 13–19 (2008).
[CrossRef]

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[CrossRef]

J. Hauer, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Enhancement of Raman modes by coherent control in beta-carotene,” Chem. Phys. Lett. 421, 523–528 (2006).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

L. Dhar, J. A. Rogers, and K. A. Nelson, “Time-resolved vibrational spectroscopy in the impulsive limit,” Chem. Rev. (Washington, D.C.) 94, 157–193 (1994).
[CrossRef]

ChemPhysChem (1)

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6, 850–857 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

B. Dietzek, B. Brueggemann, T. Pascher, and A. Yartsev, “Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye,” J. Am. Chem. Soc. 129, 13014–13021 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (11)

E. C. Carroll, B. J. Pearson, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Spectral phase effects on nonlinear resonant photochemistry of 1,3-cyclohexadiene in solution,” J. Chem. Phys. 124, 114506 (2006).
[CrossRef] [PubMed]

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, “Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study,” J. Chem. Phys. 122, 184502 (2005).
[CrossRef] [PubMed]

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

F. Langhojer, D. Cardoza, M. Baertschy, and T. Weinacht, “Gaining mechanistic insight from closed loop learning control: The importance of basis in searching the phase space,” J. Chem. Phys. 122, 014102 (2005).
[CrossRef]

A. Pelzer, S. Ramakrishna, and T. Seideman, “Optimal control of molecular alignment in dissipative media,” J. Chem. Phys. 126, 034503 (2007).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208–9215 (2003).
[CrossRef]

M. Seidl, M. Etinski, C. Uiberacker, and W. Jakubetz, “Pulse-train control of branching processes: Elimination of background and intruder state population,” J. Chem. Phys. 129, 234305 (2008).
[CrossRef] [PubMed]

J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
[CrossRef]

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

V. Beltrani, P. Ghosh, and H. Rabitz, “Exploring the capabilities of quantum optimal dynamic discrimination,” J. Chem. Phys. 130, 164112 (2009).
[CrossRef] [PubMed]

J. Math. Chem. (1)

R. Sharp, A. Mitra, and H. Rabitz, “Principles for determining mechanistic pathways from observable quantum control data,” J. Math. Chem. 44, 142–171 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Photochem. Photobiol., A (1)

T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, “Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy,” J. Photochem. Photobiol., A 180, 314–321 (2006).
[CrossRef]

J. Phys. B (3)

T. Buckup, J. Hauer, C. Serrat, and M. Motzkus, “Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation,” J. Phys. B 41, 074024 (2008).
[CrossRef]

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399–L405 (2004).
[CrossRef]

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[CrossRef]

J. Phys. Chem. A (10)

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

A. Mitra and H. Rabitz, “Mechanistic analysis of optimal dynamic discrimination of similar quantum systems,” J. Phys. Chem. A 108, 4778–4785 (2004).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “A general method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
[CrossRef] [PubMed]

T. C. Weinacht, J. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166–10168 (1999).
[CrossRef]

J. Konradi, A. Gaal, A. Scaria, V. Namboodiri, and A. Materny, “Influence of electronic resonances on mode selective excitation with tailored laser pulses,” J. Phys. Chem. A 112, 1380–1391 (2008).
[CrossRef] [PubMed]

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112, 6811–6822 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110, 5196–5204 (2006).
[CrossRef] [PubMed]

J. Raman Spectrosc. (1)

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, “Application of feedback-controlled pulse shaping for control of CARS spectra: the role of phase and amplitude modulation,” J. Raman Spectrosc. 38, 1006–1021 (2007).
[CrossRef]

Nature (4)

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

New J. Phys. (5)

S. D. Clow, U. C. Hölscher, and T. C. Weinacht, “Achieving ‘perfect’ molecular discrimination via coherent control and stimulated emission,” New J. Phys. 11, 115007 (2009).
[CrossRef]

D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
[CrossRef]

G. Katz, M. A. Ratner, and R. Kosloff, “Control by decoherence: weak field control of an excited state objective,” New J. Phys. 12, 015003 (2010).
[CrossRef]

J. Voll and R. de Vivie-Riedle, “Pulse trains in molecular dynamics and coherent spectroscopy: a theoretical study,” New J. Phys. 11, 105036 (2009).
[CrossRef]

M. A. Montgomery and N. H. Damrauer, “A convenient method to simulate and visually represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses,” New J. Phys. 11, 105053 (2009).
[CrossRef]

Opt. Commun. (1)

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Chem. Chem. Phys. (2)

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7, 3574–3579 (2005).
[CrossRef] [PubMed]

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

Phys. Rev. A (6)

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287 (1999).
[CrossRef]

A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005).
[CrossRef]

R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Rabitz, “Learning from learning algorithms: Application to attosecond dynamics of high-harmonic generation,” Phys. Rev. A 70, 043404 (2004).
[CrossRef]

L. Bonacina, J. Extermann, A. Rondi, V. Boutou, and J. P. Wolf, “Multiobjective genetic approach for optimal control of photoinduced processes,” Phys. Rev. A 76, 023408 (2007).
[CrossRef]

A. Mitra and H. Rabitz, “Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding,” Phys. Rev. A 67, 033407 (2003).
[CrossRef]

Phys. Rev. Lett. (6)

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94, 068305 (2005).
[CrossRef] [PubMed]

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[CrossRef] [PubMed]

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

B. Dietzek, B. Bruggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97, 258301 (2006).
[CrossRef]

B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, “Control of electron transfer pathways in a dye-sensitized solar cell,” Phys. Rev. Lett. 97, 208301 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008).
[CrossRef] [PubMed]

P. van der Walle, M. T. W. Milder, L. Kuipers, and J. L. Herek, “Quantum control experiment reveals solvation-induced decoherence,” Proc. Natl. Acad. Sci. U.S.A. 106, 7714–7717 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Science (6)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular-motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

D. G. Kuroda, C. P. Singh, Z. H. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency,” Science 326, 263–267 (2009).
[CrossRef] [PubMed]

V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006).
[CrossRef] [PubMed]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[CrossRef] [PubMed]

Other (7)

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, 2000).

M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, 2003).

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “Robust basis functions for control from dimension reduction of adaptive pulse-shaping experiments,” in Ultrafast Phenomena XV, R.J. D.Miller, A.M.Weiner, P.Corcum, and D.M.Jonas, eds. (Springer-Verlag, 2006), pp. 255–257.

R. J. Levis, Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pa. (personal communication, 2009).

J. G. a. M. Proakis and G. Dimitris, Digital Signal Processing, 2nd ed. (Macmillan, 1992).

E. M. Grumstrup and N. H. Damrauer are preparing a paper to be called “Time dependant perturbation theory applied to sinusoidal spectral phase modulation: insights into coherent control photophysics.”

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of amplitude switching and phase switching. The amplitude or phase at each pixel of the spatial light modulator is switched between 0 and 1 (for amplitude) or 0 and 2 π (for phase) with a sinusoidal function modulated at a unique frequency ω n .

Fig. 2
Fig. 2

(Top) Components of the second-harmonic spectrum as a function of τ for Λ 400   nm (solid line) and Λ 405   nm (dotted line) simulated using Eqs. (2a, 2b) which produce identical pulse pairs separated by τ (in the text this is called traditional switching). (Bottom) Analogous second-harmonic components simulated when using Eq. (3a) to modulate the pulse as a function of τ (in the text this is called amplitude switching).

Fig. 3
Fig. 3

Gray dashed line: Simulated wavelength-integrated second-harmonic signal intensity from the variation of the parameter τ within Eqs. (2a, 2b). In the text such a signal is called traditional IAC by analogy to interferometric autocorrelation. Red solid line: Analogous signal simulated when using the amplitude switching function Eq. (3a) to modulate the pulse. In the text such a signal is called amplitude IAC.

Fig. 4
Fig. 4

Fourier transforms at first and second orders of the two traces (IAC) shown in Fig. 3. Dashed lines: from traditional IAC due to pulse pairs from an interferometer. Solid lines: from amplitude IAC using Eq. (3a) to modulate the pulse. See the Appendix A for the equations used for Fourier transformation.

Fig. 5
Fig. 5

Simulated wavelength-integrated second-harmonic signal intensity from the variation of the parameter τ within P n ( ω n ; τ ) [Eq. (3b)]. In the text such a signal is called phase IAC.

Fig. 6
Fig. 6

Solid lines: Fourier transforms at first (top) and second (bottom) orders of the phase IAC seen in Fig. 5. For comparison the Fourier transforms of the traditional IAC are shown in dashed lines.

Fig. 7
Fig. 7

Red dotted line: Simulated wavelength-integrated SH signal intensity from the variation of the parameter τ within P n 4 phase ( ω n ; t ) [Eq. (3c)]. In the text such a signal is called four-phase IAC. Blue solid line: Simulated signal intensity from the variation of the parameter τ within Eqs. (2a, 2b) (traditional IAC). Note the different τ-axes for each method (see text for details).

Fig. 8
Fig. 8

Fourier transforms at first order ( N = 4 ) (top) and second order ( N = 8 ) (bottom) of the four-phase IAC signal shown in Fig. 7. For comparison, the second-harmonic spectrum of the transform-limited input laser pulse (prior to shaping) is shown (bottom, dashed blue line). This is the Fourier transform at second order of a traditional IAC.

Fig. 9
Fig. 9

Fourier transform at second order ( N = 8 ) of a four-phase IAC signal which was collected for a pulse with a phase ϕ ( ω ) = c ( ω ω 0 ) 3 , where c = 35 000   rad   fs 3 . For comparison, the second-harmonic spectrum of this pulse is shown (dashed blue line). This is the Fourier transform at second order of a traditional IAC.

Fig. 10
Fig. 10

Schematic of the experimental setup used for the adaptive control of emission from Coumarin C460 (following non-resonant two-photon absorption) versus SH generated in a two-photon photodiode (GaP) by the same excitation pulse. The feedback signal used by the adaptive algorithm is emission/SHG.

Fig. 11
Fig. 11

Simulated second-harmonic spectrum of the best pulse of an adaptive optimization of EM/SHG (black line). For comparison, the second-harmonic spectrum of a bandwidth limited pulse is shown (gray dashed line).

Fig. 12
Fig. 12

Fourier transforms at second order of simulated IAC traces following simulated EM/SHG adaptive optimization using traditional IAC (blue dashed-dotted line), amplitude IAC (red dotted line), phase IAC (green dashed line), and four-phase IAC (cyan dash-dot-dotted line). The second-harmonic spectrum of a bandwidth limited pulse is shown for comparison as the solid black line. Its maximum (at 400 nm) is 1.0 on the scale of the figure.

Fig. 13
Fig. 13

Double second order Fourier transform of adaptively evolving Coumarin emission (C460 in room temperature MeOH) following simultaneous measurement of an amplitude IAC versus τ Amp [using Eq. (3a)] and a phase IAC versus τ Phase [using Eq. (3b)]. The adaptive pulse-shaping optimization sought to increase the feedback signal EM/SHG (see text for details). For convenience, both axes are converted to units of wavelength. The Jacobian in this conversion has been ignored as the effects are negligible. Red reflects higher intensity and blue lower intensity. The highest intensity is highlighted by the black dashed-line boundary whereas the lowest intensity is highlighted by the black dotted-line boundaries.

Fig. 14
Fig. 14

Left column: Head-to-tail component vectors (red solid lines) and their sum (blue dotted line) that contribute to second-harmonic intensity at Λ = 400   nm following application of traditional switching functions [Eqs. (2a, 2b)]. From top to bottom τ = 0.0 , 0.67, 1.33, 2.00, and 2.67 fs. Note that one cannot discern the individual vectors in this plot. Right column: Head-to-tail component vectors (red solid lines) and their sum (blue dotted line) that contribute to second-harmonic intensity at Λ = 400   nm following the application of four-phase switching functions [Eq. (3c)]. From top to bottom τ = 0.00 , 0.17, 0.33, 0.50, and 0.67 fs.

Fig. 15
Fig. 15

Head-to-tail component vectors (red solid lines) and their sum (blue dotted line) that contribute to second-harmonic intensity at Λ = 400   nm following application of phase switching functions [Eq. (3b)]. Left column: From top to bottom τ = 0.00 , 0.33, 0.67, 1.00, and 1.33 fs. Right column: From top to bottom τ = 40.03 , 40.36, 40.69, 41.03, and 41.36 fs. Note that in the left hand column the vector sums (blue dotted lines) cannot be discerned from the head-to-tail components (red solid lines).

Fig. 16
Fig. 16

Component of the second-harmonic spectrum at Ω 2 n 1 corresponding to Λ = 400   nm as a function of τ simulated using the phase switching function [Eq. (3b)]. This is superposed with the function cos ( 2 ω n τ ) = cos ( Ω 2 n 1 τ ) in the red dashed line.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

R ( ω ; τ ) = 1 2 [ e i ω τ + 1 ] .
A n trad ( ω n ; τ ) = | cos ( ω n τ 2 ) | ,
P n trad ( ω n ; τ ) = ω n τ 2 + ( π 2 π 2 sgn ( cos ( ω n τ 2 ) ) ) .
A n ( ω n ; τ ) = 1 2 [ cos   ω n τ + 1 ] ,
P n ( ω n ; τ ) = α [ sin   ω n τ + 1 ] ,
P n 4 phase ( ω n ; τ ) = α   cos ( ω n τ + n π 2 ) .
v i , j = | E ( ω i ) E ( ω j ) | e i ( ϕ i + ϕ j ) .
s i , j ( Ω ) i , j v i , j δ ( Ω ω i ω j ) ,
S ( 2 ) ( Ω ) | s i , j ( Ω ) | 2 .
Y pos ( N ) ( ω n ) [ | m = 0 M y m ( τ m ) cos ( N ω n τ m ) | 2 | i m = 0 M y m ( τ m ) sin ( N ω n τ m ) | 2 ] 1 / 2 ,
Y all ( N ) ( ω n ) [ | m = M M y | m | ( τ m ) cos ( N ω n τ m ) | 2 | i m = M M y | m | ( τ m ) sin ( N ω n τ m ) | 2 ] 1 / 2 .
s i = 2 n 1 ( Ω = 2 ω n ) M = n + 1 M = n 1 | E n M E n + M | ,
s 2 n 1 ( Ω 2 n 1 ; τ ) 1 2 M = n + 1 M = n 1 E n M [ cos ( Ω 2 n 1 2 τ ) + cos ( M Δ ω τ ) ] ,
s 2 n 1 ( Ω 2 n 1 ; τ ) 1 4 M = n + 1 M = n 1 E n M [ cos 2 ( Ω 2 n 1 2 τ ) + 2   cos ( Ω 2 n 1 2 τ ) cos ( M Δ ω τ ) + cos 2 ( M Δ ω τ ) ] .
s fast ( Ω 2 n 1 ; τ ) s 2 n 1 ( Ω 2 n 1 ; τ 0 ) [ cos ( Ω 2 n 1 2 τ ) + C a ] ,
s fast ( Ω 2 n 1 ; τ ) s 2 n 1 ( Ω 2 n 1 ; τ 0 ) [ cos ( Ω 2 n 1 2 τ ) + 1 4 cos ( Ω 2 n 1 τ ) + C b ] .
s 2 n 1 ( Ω = 2 ω n ) M = n + 1 M = n 1 | E n M E n + M | e i ( ϕ n M + ϕ n + M ) .
s 2 n 1 ( Ω 2 n 1 ; τ ) M = n + 1 M = n 1 E n M   exp { i 2 α   sin ( Ω 2 n 1 2 τ ) cos ( M Δ ω τ ) } ,
s 2 n 1 ( Ω 2 n 1 ; τ ) M = n + 1 M = n 1 E n M   exp { i 2 α   cos ( Ω 2 n 1 2 τ + n π 2 ) cos ( M Δ ω τ M π 2 ) } ,
s 2 n 1 ( Ω ) 2 M = n + 1 M = n 1 E n M   exp { i 2 α   cos ( Ω 2 n 1 2 τ + n π 2 ) cos ( M π 2 ) } .
s 2 n 1 ( Ω ; τ ) M = n + 1 M = n 1 E n M   exp { i 2 α ϕ   cos ( M π 2 ) } E n n + 1 e i 2 α ϕ   cos [ ( n 1 ) π / 2 ] + + E n 2 e i 2 α ϕ + E n 1 + E n 0 e i 2 α ϕ + E n 1 + E n 2 e i 2 α ϕ + .
e i 2 α ϕ = exp [ i 2 α   cos ( Ω 2 n 1 2 τ + n π 2 ) ] = l = J l ( 2 α ) exp [ i l ( Ω 2 n 1 2 τ + ( n + 1 ) π 2 ) ] ,
e i 2 α ϕ = exp [ i 2 α   cos ( Ω 2 n 1 2 τ + n π 2 ) ] = l = J l ( 2 α ) exp [ i l ( Ω 2 n 1 2 τ + ( n + 1 ) π 2 + π ) ] ,
exp [ i 2 α   cos ( Ω 2 n 1 2 τ + n π 2 ) ] = J 0 ( 2 α ) + J 1 ( 2 α ) [ e i φ e i φ ] + J 2 ( 2 α ) [ e 2 i φ + e 2 i φ ] + J 3 ( 2 α ) [ e 3 i φ e 3 i φ ] + J 4 ( 2 α ) [ e 4 i φ + e 4 i φ ] + = J 0 ( 2 α ) + 2 i J 1 ( 2 α ) sin   φ + 2 J 2 ( 2 α ) cos ( 2 φ ) + 2 i J 3 ( 2 α ) sin ( 3 φ ) + 2 J 4 ( 2 α ) cos ( 4 φ ) + ,
exp [ i 2 α   cos ( Ω 2 n 1 2 τ + n π 2 ) ] = J 0 ( 2 α ) + J 1 ( 2 α ) [ e i ( φ + π ) e i ( φ + π ) ] + J 2 ( 2 α ) [ e 2 i ( φ + π ) + e 2 i ( φ + π ) ] + J 3 ( 2 α ) [ e 3 i ( φ + π ) e 3 i ( φ + π ) ] + J 4 ( 2 α ) [ e 4 i ( φ + π ) + e 4 i ( φ + π ) ] + = J 0 ( 2 α ) 2 i J 1 ( 2 α ) sin   φ + 2 J 2 ( 2 α ) cos ( 2 φ ) 2 i J 3 ( 2 α ) sin ( 3 φ ) + 2 J 4 ( 2 α ) cos ( 4 φ ) + ,

Metrics