Abstract

We present a theoretical and numerical analysis of a subwavelength plasmon-dielectric system that incorporates a periodic metal grating deposited on a dielectric waveguide and supports transmission enhancement of slow light at infrared wavelength for the s polarization. We find that a Fano resonance mechanism to produce this novel phenomenon is based on the interaction of the discrete waveguide-plasmon hybridization modes with the incident photon continuum, which is different from the popular cases with surface plasmonic modes excited by p polarized incident light. The further analysis of the Fano effect indicates that group velocity of slow light and transparent efficiency can be controlled in a large range by the coupling strength, and a more than 20-fold transmission enhancement corresponding to the group velocity of 0.005c is obtained as compared to the case without the dielectric waveguide substrate.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  3. M.-W. Kim, T.-T. Kim, J.-E. Kim, and H. Y. Park, “Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films,” Opt. Express 17, 12315–12322 (2009).
    [CrossRef] [PubMed]
  4. J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Terahertz transmission properties of an individual slit in a thin metallic plate,” Opt. Express 17, 12660–12667 (2009).
    [CrossRef] [PubMed]
  5. M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
    [CrossRef]
  6. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  7. R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission enhancement in subwavelength hole arrays,” J. Opt. Soc. Am. B 24, 2589–2596 (2007).
    [CrossRef]
  8. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef] [PubMed]
  9. E. Moreno, L. Martin-Moreno, and F. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
    [CrossRef]
  10. S. Xiao, L. Peng, and N. Mortensen, “Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures,” Opt. Express 18, 6040–6047 (2010).
    [CrossRef] [PubMed]
  11. M. Guillaumée, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
    [CrossRef] [PubMed]
  12. P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [CrossRef]
  13. F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  14. S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  15. T. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
    [CrossRef]
  16. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  17. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett. 74, 2447 (1995).
    [CrossRef] [PubMed]
  18. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  19. J. E. Heebner and R. W. Boyd, “SLOW AND STOPPED LIGHT ‘Slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002).
    [CrossRef]
  20. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef] [PubMed]
  21. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  22. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  23. E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005).
    [CrossRef]
  24. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
    [CrossRef]
  25. K. Tsakmakidis, A. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
    [CrossRef] [PubMed]
  26. W. Lu, S. Savo, B. Casse, and S. Sridhar, “Slow microwave waveguide made of negative permeability metamaterials,” Microwave Opt. Technol. Lett. 51, 2705–2709 (2009).
    [CrossRef]
  27. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: Sharp Fano resonances and slow light,” Opt. Photonics News 20, 22–27 (2009).
    [CrossRef]
  28. T. Zentgraf, S. Zhang, R. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
    [CrossRef]
  29. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [CrossRef] [PubMed]
  30. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [CrossRef] [PubMed]
  31. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
    [CrossRef]
  32. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
    [CrossRef]
  33. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
    [CrossRef] [PubMed]
  34. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [CrossRef] [PubMed]
  35. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
    [CrossRef]
  36. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
    [CrossRef]
  37. A. Dogariu, T. Thio, L. Wang, T. Ebbesen, and H. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26, 450–452 (2001).
    [CrossRef]
  38. A. Dechant and A. Elezzabi, “Femtosecond optical pulse propagation in subwavelength metallic slits,” Appl. Phys. Lett. 84, 4678–4680 (2004).
    [CrossRef]
  39. J. Prangsma, D. Oosten, R. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
    [CrossRef]
  40. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  41. L. Dai and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009).
    [CrossRef] [PubMed]
  42. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
    [CrossRef] [PubMed]
  43. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]

2010 (5)

F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

J. Prangsma, D. Oosten, R. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[CrossRef]

S. Xiao, L. Peng, and N. Mortensen, “Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures,” Opt. Express 18, 6040–6047 (2010).
[CrossRef] [PubMed]

M. Guillaumée, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[CrossRef] [PubMed]

2009 (13)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef] [PubMed]

M.-W. Kim, T.-T. Kim, J.-E. Kim, and H. Y. Park, “Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films,” Opt. Express 17, 12315–12322 (2009).
[CrossRef] [PubMed]

J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Terahertz transmission properties of an individual slit in a thin metallic plate,” Opt. Express 17, 12660–12667 (2009).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

L. Dai and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009).
[CrossRef] [PubMed]

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

W. Lu, S. Savo, B. Casse, and S. Sridhar, “Slow microwave waveguide made of negative permeability metamaterials,” Microwave Opt. Technol. Lett. 51, 2705–2709 (2009).
[CrossRef]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: Sharp Fano resonances and slow light,” Opt. Photonics News 20, 22–27 (2009).
[CrossRef]

T. Zentgraf, S. Zhang, R. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
[CrossRef]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

2008 (5)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

T. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

2007 (3)

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission enhancement in subwavelength hole arrays,” J. Opt. Soc. Am. B 24, 2589–2596 (2007).
[CrossRef]

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
[CrossRef]

K. Tsakmakidis, A. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

2006 (3)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

E. Moreno, L. Martin-Moreno, and F. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

2005 (2)

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Dechant and A. Elezzabi, “Femtosecond optical pulse propagation in subwavelength metallic slits,” Appl. Phys. Lett. 84, 4678–4680 (2004).
[CrossRef]

2003 (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

J. E. Heebner and R. W. Boyd, “SLOW AND STOPPED LIGHT ‘Slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002).
[CrossRef]

2001 (1)

1999 (2)

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1998 (1)

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1995 (1)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

Bai, Q.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Berini, P.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Biswas, R.

Boardman, A.

K. Tsakmakidis, A. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. E. Heebner and R. W. Boyd, “SLOW AND STOPPED LIGHT ‘Slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Casse, B.

W. Lu, S. Savo, B. Casse, and S. Sridhar, “Slow microwave waveguide made of negative permeability metamaterials,” Microwave Opt. Technol. Lett. 51, 2705–2709 (2009).
[CrossRef]

Chen, J.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Cheng, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Choi, S.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dai, L.

Dechant, A.

A. Dechant and A. Elezzabi, “Femtosecond optical pulse propagation in subwavelength metallic slits,” Appl. Phys. Lett. 84, 4678–4680 (2004).
[CrossRef]

Derov, J. S.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005).
[CrossRef]

Di Gennaro, E.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005).
[CrossRef]

Ding, C. G.

Dogariu, A.

Dunbar, L. A.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Ebbesen, T.

F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

A. Dogariu, T. Thio, L. Wang, T. Ebbesen, and H. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26, 450–452 (2001).
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Eckert, R.

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Elezzabi, A.

A. Dechant and A. Elezzabi, “Femtosecond optical pulse propagation in subwavelength metallic slits,” Appl. Phys. Lett. 84, 4678–4680 (2004).
[CrossRef]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Garcia-Vidal, F.

F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

E. Moreno, L. Martin-Moreno, and F. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

García-Vidal, F. J.

M. Guillaumée, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Ghaemi, H.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Guillaumée, M.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Heebner, J. E.

J. E. Heebner and R. W. Boyd, “SLOW AND STOPPED LIGHT ‘Slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002).
[CrossRef]

Hess, O.

K. Tsakmakidis, A. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

Jain, M.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

Jiang, C.

Johnson, E.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kang, J.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Kang, M.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

Kastel, J.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
[CrossRef]

Kim, J. -E.

Kim, M. -W.

Kim, T. -T.

Klein, M. J. K.

Koo, S.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Krauss, T.

T. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[CrossRef]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Kuipers, L.

F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

J. Prangsma, D. Oosten, R. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[CrossRef]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
[CrossRef]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Lee, J. W.

Lezec, H.

A. Dogariu, T. Thio, L. Wang, T. Ebbesen, and H. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26, 450–452 (2001).
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Liu, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
[CrossRef]

Lu, W.

W. Lu, S. Savo, B. Casse, and S. Sridhar, “Slow microwave waveguide made of negative permeability metamaterials,” Microwave Opt. Technol. Lett. 51, 2705–2709 (2009).
[CrossRef]

Lu, W. T.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005).
[CrossRef]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

E. Moreno, L. Martin-Moreno, and F. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

Martín-Moreno, L.

M. Guillaumée, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Mittleman, D. M.

Moerland, R.

J. Prangsma, D. Oosten, R. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[CrossRef]

Moreno, E.

E. Moreno, L. Martin-Moreno, and F. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

Mortensen, N.

Neginhal, S.

Nikitin, A. Y.

Nordlander, P.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Oosten, D.

J. Prangsma, D. Oosten, R. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[CrossRef]

Oulton, R.

T. Zentgraf, S. Zhang, R. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

Papasimakis, N.

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: Sharp Fano resonances and slow light,” Opt. Photonics News 20, 22–27 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Parimi, P. V.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005).
[CrossRef]

Park, D.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Park, G.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Park, H.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Park, H. Y.

Park, N.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Park, T. H.

Paspalakis, E.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Pendry, J.

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Peng, L.

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
[CrossRef]

Planken, P.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Porto, J.

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Prangsma, J.

J. Prangsma, D. Oosten, R. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[CrossRef]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Puscasu, I.

Qiu, M.

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
[CrossRef]

Rockstuhl, C.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
[CrossRef]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Savo, S.

W. Lu, S. Savo, B. Casse, and S. Sridhar, “Slow microwave waveguide made of negative permeability metamaterials,” Microwave Opt. Technol. Lett. 51, 2705–2709 (2009).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Seo, M.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Singh, R.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef] [PubMed]

Spassov, V.

Sridhar, S.

W. Lu, S. Savo, B. Casse, and S. Sridhar, “Slow microwave waveguide made of negative permeability metamaterials,” Microwave Opt. Technol. Lett. 51, 2705–2709 (2009).
[CrossRef]

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005).
[CrossRef]

Stanley, R. P.

Suwal, O.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Thio, T.

A. Dogariu, T. Thio, L. Wang, T. Ebbesen, and H. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26, 450–452 (2001).
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Tsakmakidis, K.

K. Tsakmakidis, A. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

Turchinetz, B.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005).
[CrossRef]

Vitanov, N. V.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Wang, H.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Wang, L.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
[CrossRef]

Wolff, P.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Xiao, S.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Yannopapas, V.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Yin, G. Y.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

Zentgraf, T.

T. Zentgraf, S. Zhang, R. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef] [PubMed]

Zhang, S.

T. Zentgraf, S. Zhang, R. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Zhang, W.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Zhang, X.

T. Zentgraf, S. Zhang, R. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: Sharp Fano resonances and slow light,” Opt. Photonics News 20, 22–27 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
[CrossRef]

A. Dechant and A. Elezzabi, “Femtosecond optical pulse propagation in subwavelength metallic slits,” Appl. Phys. Lett. 84, 4678–4680 (2004).
[CrossRef]

J. Appl. Phys. (1)

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

J. Mod. Opt. (1)

J. E. Heebner and R. W. Boyd, “SLOW AND STOPPED LIGHT ‘Slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

E. Moreno, L. Martin-Moreno, and F. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

W. Lu, S. Savo, B. Casse, and S. Sridhar, “Slow microwave waveguide made of negative permeability metamaterials,” Microwave Opt. Technol. Lett. 51, 2705–2709 (2009).
[CrossRef]

Nat. Photonics (3)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

T. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[CrossRef]

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Nature (4)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

K. Tsakmakidis, A. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Nature Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009).
[CrossRef]

New J. Phys. (1)

J. Prangsma, D. Oosten, R. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Opt. Photonics News (1)

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: Sharp Fano resonances and slow light,” Opt. Photonics News 20, 22–27 (2009).
[CrossRef]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (5)

T. Zentgraf, S. Zhang, R. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Phys. Rev. Lett. (10)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Other (1)

S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Illustration of the hybrid structure with light propagation in negative z direction. (b) Structure cross section together with the geometrical parameters.

Fig. 2
Fig. 2

(a) Transmission spectrum for different values of the dielectric slab thickness. The inset shows the transmission of s-polarized light through isolated metal slits. (b) Calculated transmission in dependence on the lattice period p for a 200 nm thickness dielectric.

Fig. 3
Fig. 3

(a), (b) Calculated transmission and phase curves for a structure with a lattice period of p = 576   nm and the dielectric thickness of h = 200   nm . (c) Transmission maxima for different lattice periods and corresponding group index. (d) Magnitude of the y-component electric field and (e) the x-component magnetic field at the peak frequency [point A shown in (a)] of the transparent window, respectively.

Fig. 4
Fig. 4

Normalized transmission and corresponding group index as a function of the space distance d. The bottom inset shows a periodic unit of the modified structure with a same dielectric layer with thickness d between metal strip and slab dielectric waveguide. The adding layer thickness d takes different value as shown in the figure, and the other parameters take the same values as those before.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n g = c v g = c b + h τ g = c b + h d φ ( ω ) d ω ,

Metrics