Abstract

We show that the peak powers of ytterbium-doped fiber chirped pulse amplification (CPA) can be scaled by at least 1 order of magnitude (in the transform limit) as compared to current systems by using a different spectral region of operation. A simple and fast model for saturated broadband fiber CPA systems is developed and applied to study the impact of the interplay between the spectrally dependent small signal gain and the saturation on the output bandwidth. The influence of self-phase modulation on the recompression of the pulse is discussed. It can be shown that the novel operation regime exhibits superior performance even if nonlinear effects are considered. The numerical results are significant for the design of the next generation of ultrafast high power fiber lasers.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
    [Crossref] [PubMed]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  3. D. M. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [Crossref]
  4. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber laser,” Opt. Express 14, 2715–2720 (2006).
    [Crossref] [PubMed]
  5. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27, 1565–1570 (2009).
    [Crossref]
  6. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007).
    [Crossref] [PubMed]
  7. A. E. Siegman, Lasers (University Science Books, 1986).
  8. A. Chong, L. Kuznetsova, and F. W. Wise, “Theoretical optimization of nonlinear chirped pulse fiber amplifiers,” J. Opt. Soc. Am. B 24, 1815–1823 (2007).
    [Crossref]
  9. D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett. 34, 3788–3790 (2009).
    [Crossref] [PubMed]
  10. D. N. Schimpf, T. Eidam, E. Seise, S. Hädrich, J. Limpert, and A. Tünnermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity,” Opt. Express 17, 18774–18781 (2009).
    [Crossref]
  11. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16, 10664–10674 (2008).
    [Crossref] [PubMed]
  12. D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express 16, 8876–8886 (2008).
    [Crossref] [PubMed]
  13. S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17, 3913–3922 (2009).
    [Crossref] [PubMed]
  14. F. Tavella, A. Willner, J. Rothhardt, S. Hädrich, E. Seise, S. Düsterer, T. Tschentscher, H. Schlarb, J. Feldhaus, J. Limpert, A. Tünnermann, and J. Rossbach, “Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA,” Opt. Express 18, 4689–4694 (2010).
    [Crossref] [PubMed]
  15. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
    [Crossref]
  16. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
    [Crossref]
  17. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 33, 1049–1056 (1997).
    [Crossref]
  18. D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16, 17637–17646 (2008).
    [Crossref] [PubMed]
  19. A. Braun, S. Kane, and T. Norris, “Compensation of self-phase modulation in chirped-pulse amplification laser systems,” Opt. Lett. 22, 615–617 (1997).
    [Crossref] [PubMed]
  20. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Self-phase modulation compensated by positive dispersion in chirped-pulse systems,” Opt. Express 17, 4997–5007 (2009).
    [Crossref] [PubMed]
  21. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
    [Crossref]
  22. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raski, C. Rose Petruck, I. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668–670 (1996).
    [Crossref] [PubMed]
  23. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16, 7055–7059 (2008).
    [Crossref] [PubMed]
  24. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
    [Crossref] [PubMed]
  25. Y. Deng, C.-Y. Chien, B. G. Fidric, and J. D. Kafka, “Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier,” Opt. Lett. 34, 3469–3471 (2009).
    [Crossref] [PubMed]
  26. L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88, 515–518 (2007).
    [Crossref]
  27. Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, “Transform-limited 100 μJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher–compressor,” Opt. Lett. 33, 1527–1529 (2008).
    [Crossref] [PubMed]
  28. H. Kalaycioglu, B. Oktem, Ç. Senel, P. P. Paltani, and F. Ö. Ilday, “Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35, 959–961 (2010).
    [Crossref] [PubMed]
  29. L. Kuznetsova, A. Chong, and F. W. Wise, “Interplay of nonlinearity and gain shaping in femtosecond fiber amplifiers,” Opt. Lett. 31, 2640–2642 (2006).
    [Crossref] [PubMed]
  30. D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, “Compensation of gain narrowing by self-phase modulation in high-energy ultrafast fiber chirped-pulse amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 182–186 (2009).
    [Crossref]
  31. S. Zhou, T. Takamido, S. Imai, and F. Wise, “Exploitation of stimulated Raman scattering in short-pulse fiber amplifiers,” Opt. Lett. 35, 2397–2399 (2010).
    [Crossref] [PubMed]
  32. Software LIEKKI Application Designer, http://www.nlight.net.
  33. X. Peng and L. Dong, “Temperature dependence of ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 25, 126–130 (2008).
    [Crossref]
  34. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16, 15540–15545 (2008).
    [Crossref] [PubMed]
  35. V. L. da Silva, Y. Silberberg, J. S. Wang, E. L. Goldstein, and M. J. Andrejco, “Automatic gain flattening in optical fiber amplifiers via clamping of inhomogeneous gain,” IEEE Photon. Technol. Lett. 5, 412–414 (1993).
    [Crossref]
  36. M. J. F. Digonnet and S. Savin, “Inhomogeneous broadening to modify the gain of an optical amplifier,” U.S. patent 6,356,385 (March 12, 2002).
  37. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
    [Crossref]
  38. T. Feurer, Institute of Applied Physics, University of Bern, Switzerland (personal communication, 2009).
  39. E. Yahel, O. Hess, and A. Hardy, “Analysis of nonlinear gain-induced effects on short-pulse amplification in doped fibers by use of an extended power equation,” Opt. Lett. 32, 118–120 (2007).
    [Crossref]
  40. F. He, J. H. Price, K. T. Vu, A. Malinowski, J. K. Sahu, and D. J. Richardson, “Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling,” Opt. Express 14, 12846–12858 (2006).
    [Crossref] [PubMed]
  41. A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
    [Crossref]
  42. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express 13, 4869–4877 (2005).
    [Crossref] [PubMed]
  43. M. E. Fermann, G. Imeshev, G. C. Cho, Z. Liu, and D. J. Harter, “All-fiber chirped pulse amplification system,” U.S. patent 7,414,780 (August 19, 2008).
  44. L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett. 32, 2671–2673 (2007).
    [Crossref] [PubMed]
  45. L. Shah and M. E. Fermann, “High-power ultrashort-pulse fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 552–558 (2007).
    [Crossref]
  46. V. V. Lozovoy, I. Pastirk, and Ma. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
    [Crossref] [PubMed]
  47. A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, “Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning,” Appl. Phys. B 70, S133–S141 (2000).
    [Crossref]
  48. J. Prawiharjo, N. K. Daga, R. Geng, J. H. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express 16, 15074–15089 (2008).
    [Crossref] [PubMed]
  49. T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, “Feedback control for accurate shaping of ultrashort optical pulses prior to CPA,” Jpn. J. Appl. Phys., Part 1 43, 1366–1375 (2004).
    [Crossref]
  50. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008).
    [Crossref] [PubMed]
  51. C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti: sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
    [Crossref]
  52. M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Schonnagel, and W. Sandner, “Broadband amplification of 800-nm pulses with a combination of negatively and positively chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 194–200 (2006).
    [Crossref]

2010 (5)

2009 (8)

D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, “Compensation of gain narrowing by self-phase modulation in high-energy ultrafast fiber chirped-pulse amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 182–186 (2009).
[Crossref]

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17, 3913–3922 (2009).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Self-phase modulation compensated by positive dispersion in chirped-pulse systems,” Opt. Express 17, 4997–5007 (2009).
[Crossref] [PubMed]

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27, 1565–1570 (2009).
[Crossref]

D. N. Schimpf, T. Eidam, E. Seise, S. Hädrich, J. Limpert, and A. Tünnermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity,” Opt. Express 17, 18774–18781 (2009).
[Crossref]

Y. Deng, C.-Y. Chien, B. G. Fidric, and J. D. Kafka, “Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier,” Opt. Lett. 34, 3469–3471 (2009).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett. 34, 3788–3790 (2009).
[Crossref] [PubMed]

2008 (9)

X. Peng and L. Dong, “Temperature dependence of ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 25, 126–130 (2008).
[Crossref]

T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008).
[Crossref] [PubMed]

X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16, 7055–7059 (2008).
[Crossref] [PubMed]

D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express 16, 8876–8886 (2008).
[Crossref] [PubMed]

Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, “Transform-limited 100 μJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher–compressor,” Opt. Lett. 33, 1527–1529 (2008).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16, 10664–10674 (2008).
[Crossref] [PubMed]

J. Prawiharjo, N. K. Daga, R. Geng, J. H. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express 16, 15074–15089 (2008).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16, 15540–15545 (2008).
[Crossref] [PubMed]

D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16, 17637–17646 (2008).
[Crossref] [PubMed]

2007 (6)

2006 (4)

2005 (1)

2004 (2)

V. V. Lozovoy, I. Pastirk, and Ma. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
[Crossref] [PubMed]

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, “Feedback control for accurate shaping of ultrashort optical pulses prior to CPA,” Jpn. J. Appl. Phys., Part 1 43, 1366–1375 (2004).
[Crossref]

2000 (2)

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, “Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning,” Appl. Phys. B 70, S133–S141 (2000).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

1998 (1)

1997 (2)

A. Braun, S. Kane, and T. Norris, “Compensation of self-phase modulation in chirped-pulse amplification laser systems,” Opt. Lett. 22, 615–617 (1997).
[Crossref] [PubMed]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

1996 (2)

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

1993 (1)

V. L. da Silva, Y. Silberberg, J. S. Wang, E. L. Goldstein, and M. J. Andrejco, “Automatic gain flattening in optical fiber amplifiers via clamping of inhomogeneous gain,” IEEE Photon. Technol. Lett. 5, 412–414 (1993).
[Crossref]

1985 (1)

D. M. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Andersen, T. V.

Andrejco, M. J.

V. L. da Silva, Y. Silberberg, J. S. Wang, E. L. Goldstein, and M. J. Andrejco, “Automatic gain flattening in optical fiber amplifiers via clamping of inhomogeneous gain,” IEEE Photon. Technol. Lett. 5, 412–414 (1993).
[Crossref]

Arkwright, J. W.

Atkins, G. R.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Barty, C. P. J.

Boullet, J.

Braun, A.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Chien, C. -Y.

Cho, G. C.

M. E. Fermann, G. Imeshev, G. C. Cho, Z. Liu, and D. J. Harter, “All-fiber chirped pulse amplification system,” U.S. patent 7,414,780 (August 19, 2008).

Chong, A.

Clausnitzer, T.

Cormier, E.

Curley, P.

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti: sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[Crossref]

da Silva, V. L.

V. L. da Silva, Y. Silberberg, J. S. Wang, E. L. Goldstein, and M. J. Andrejco, “Automatic gain flattening in optical fiber amplifiers via clamping of inhomogeneous gain,” IEEE Photon. Technol. Lett. 5, 412–414 (1993).
[Crossref]

Daga, N. K.

Dantus, Ma.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Deng, Y.

Digonnet, M. J. F.

Do, B. T.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

Dong, L.

Druon, F.

D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, “Compensation of gain narrowing by self-phase modulation in high-energy ultrafast fiber chirped-pulse amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 182–186 (2009).
[Crossref]

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

Düsterer, S.

Efimov, A.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, “Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning,” Appl. Phys. B 70, S133–S141 (2000).
[Crossref]

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Eidam, T.

Elango, P.

Ermeneux, S.

Farrow, R. L.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

Feldhaus, J.

Fermann, M. E.

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27, 1565–1570 (2009).
[Crossref]

L. Shah and M. E. Fermann, “High-power ultrashort-pulse fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 552–558 (2007).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

M. E. Fermann, G. Imeshev, G. C. Cho, Z. Liu, and D. J. Harter, “All-fiber chirped pulse amplification system,” U.S. patent 7,414,780 (August 19, 2008).

Feurer, T.

T. Feurer, Institute of Applied Physics, University of Bern, Switzerland (personal communication, 2009).

Fidric, B. G.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

Fu, L.

Gabler, T.

Geng, R.

Georges, P.

D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, “Compensation of gain narrowing by self-phase modulation in high-energy ultrafast fiber chirped-pulse amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 182–186 (2009).
[Crossref]

Goldstein, E. L.

V. L. da Silva, Y. Silberberg, J. S. Wang, E. L. Goldstein, and M. J. Andrejco, “Automatic gain flattening in optical fiber amplifiers via clamping of inhomogeneous gain,” IEEE Photon. Technol. Lett. 5, 412–414 (1993).
[Crossref]

Guo, T.

Hadley, G. R.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

Hädrich, S.

Hanf, S.

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Hanna, D. C.

J. Prawiharjo, N. K. Daga, R. Geng, J. H. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express 16, 15074–15089 (2008).
[Crossref] [PubMed]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Hanna, M.

D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, “Compensation of gain narrowing by self-phase modulation in high-energy ultrafast fiber chirped-pulse amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 182–186 (2009).
[Crossref]

Hardy, A.

Harter, D. J.

M. E. Fermann, G. Imeshev, G. C. Cho, Z. Liu, and D. J. Harter, “All-fiber chirped pulse amplification system,” U.S. patent 7,414,780 (August 19, 2008).

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

He, F.

Hess, O.

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Ilday, F. Ö.

Imai, S.

Imeshev, G.

M. E. Fermann, G. Imeshev, G. C. Cho, Z. Liu, and D. J. Harter, “All-fiber chirped pulse amplification system,” U.S. patent 7,414,780 (August 19, 2008).

Jetschke, S.

Kafka, J. D.

Kalashnikov, M. P.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Schonnagel, and W. Sandner, “Broadband amplification of 800-nm pulses with a combination of negatively and positively chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 194–200 (2006).
[Crossref]

Kalaycioglu, H.

Kämpfe, T.

Kane, S.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88, 515–518 (2007).
[Crossref]

A. Braun, S. Kane, and T. Norris, “Compensation of self-phase modulation in chirped-pulse amplification laser systems,” Opt. Lett. 22, 615–617 (1997).
[Crossref] [PubMed]

Kannari, F.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, “Feedback control for accurate shaping of ultrashort optical pulses prior to CPA,” Jpn. J. Appl. Phys., Part 1 43, 1366–1375 (2004).
[Crossref]

Kirchhof, J.

Kley, E. -B.

Kobayashi, Y.

Krause, J. L.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, “Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning,” Appl. Phys. B 70, S133–S141 (2000).
[Crossref]

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

Kuznetsova, L.

Lachko, I. M.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Schonnagel, and W. Sandner, “Broadband amplification of 800-nm pulses with a combination of negatively and positively chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 194–200 (2006).
[Crossref]

Le Blanc, C.

Leich, M.

Leitenstorfer, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Li, J.

Limpert, J.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[Crossref] [PubMed]

F. Tavella, A. Willner, J. Rothhardt, S. Hädrich, E. Seise, S. Düsterer, T. Tschentscher, H. Schlarb, J. Feldhaus, J. Limpert, A. Tünnermann, and J. Rossbach, “Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA,” Opt. Express 18, 4689–4694 (2010).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett. 34, 3788–3790 (2009).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Self-phase modulation compensated by positive dispersion in chirped-pulse systems,” Opt. Express 17, 4997–5007 (2009).
[Crossref] [PubMed]

D. N. Schimpf, T. Eidam, E. Seise, S. Hädrich, J. Limpert, and A. Tünnermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity,” Opt. Express 17, 18774–18781 (2009).
[Crossref]

S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17, 3913–3922 (2009).
[Crossref] [PubMed]

D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16, 17637–17646 (2008).
[Crossref] [PubMed]

D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express 16, 8876–8886 (2008).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16, 10664–10674 (2008).
[Crossref] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007).
[Crossref] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber laser,” Opt. Express 14, 2715–2720 (2006).
[Crossref] [PubMed]

Liu, Z.

M. E. Fermann, G. Imeshev, G. C. Cho, Z. Liu, and D. J. Harter, “All-fiber chirped pulse amplification system,” U.S. patent 7,414,780 (August 19, 2008).

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Lozovoy, V. V.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Malinowski, A.

Marcinkevicius, A.

Mckay, H. A.

Mei, B.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, “Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning,” Appl. Phys. B 70, S133–S141 (2000).
[Crossref]

Moores, M. D.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, “Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning,” Appl. Phys. B 70, S133–S141 (2000).
[Crossref]

Mottay, E.

Mourou, G.

D. M. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Nodop, D.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

Norris, T.

Ohno, K.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, “Feedback control for accurate shaping of ultrashort optical pulses prior to CPA,” Jpn. J. Appl. Phys., Part 1 43, 1366–1375 (2004).
[Crossref]

Okamoto, T.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, “Feedback control for accurate shaping of ultrashort optical pulses prior to CPA,” Jpn. J. Appl. Phys., Part 1 43, 1366–1375 (2004).
[Crossref]

Oktem, B.

Osvay, K.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Schonnagel, and W. Sandner, “Broadband amplification of 800-nm pulses with a combination of negatively and positively chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 194–200 (2006).
[Crossref]

Paltani, P. P.

Papadopoulos, D. N.

D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, “Compensation of gain narrowing by self-phase modulation in high-energy ultrafast fiber chirped-pulse amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 182–186 (2009).
[Crossref]

Parriaux, O.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Pastirk, I.

Peng, X.

Prawiharjo, J.

Price, J. H.

Raski, F.

Reitze, D. H.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, “Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning,” Appl. Phys. B 70, S133–S141 (2000).
[Crossref]

Richardson, D. J.

Rose Petruck, C.

Röser, F.

Rossbach, J.

Rothhardt, J.

Ruchert, C.

Sahu, J. K.

Salin, F.

Sandner, W.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Schonnagel, and W. Sandner, “Broadband amplification of 800-nm pulses with a combination of negatively and positively chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 194–200 (2006).
[Crossref]

Savin, S.

M. J. F. Digonnet and S. Savin, “Inhomogeneous broadening to modify the gain of an optical amplifier,” U.S. patent 6,356,385 (March 12, 2002).

Schimpf, D.

Schimpf, D. N.

Schlarb, H.

Schmidt, O.

Schonnagel, H.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Schonnagel, and W. Sandner, “Broadband amplification of 800-nm pulses with a combination of negatively and positively chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 194–200 (2006).
[Crossref]

Schreiber, T.

Schwuchow, A.

Seise, E.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[Crossref] [PubMed]

F. Tavella, A. Willner, J. Rothhardt, S. Hädrich, E. Seise, S. Düsterer, T. Tschentscher, H. Schlarb, J. Feldhaus, J. Limpert, A. Tünnermann, and J. Rossbach, “Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA,” Opt. Express 18, 4689–4694 (2010).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett. 34, 3788–3790 (2009).
[Crossref] [PubMed]

D. N. Schimpf, T. Eidam, E. Seise, S. Hädrich, J. Limpert, and A. Tünnermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity,” Opt. Express 17, 18774–18781 (2009).
[Crossref]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Self-phase modulation compensated by positive dispersion in chirped-pulse systems,” Opt. Express 17, 4997–5007 (2009).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16, 10664–10674 (2008).
[Crossref] [PubMed]

D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express 16, 8876–8886 (2008).
[Crossref] [PubMed]

Sell, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Senel, Ç.

Shah, L.

L. Shah and M. E. Fermann, “High-power ultrashort-pulse fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 552–558 (2007).
[Crossref]

Shepherd, D. P.

Siders, C. W.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, “Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning,” Appl. Phys. B 70, S133–S141 (2000).
[Crossref]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Silberberg, Y.

V. L. da Silva, Y. Silberberg, J. S. Wang, E. L. Goldstein, and M. J. Andrejco, “Automatic gain flattening in optical fiber amplifiers via clamping of inhomogeneous gain,” IEEE Photon. Technol. Lett. 5, 412–414 (1993).
[Crossref]

Smith, A. V.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

Squier, I.

Squier, J.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88, 515–518 (2007).
[Crossref]

Strickland, D. M.

D. M. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Takamido, T.

Tanabe, T.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, “Feedback control for accurate shaping of ultrashort optical pulses prior to CPA,” Jpn. J. Appl. Phys., Part 1 43, 1366–1375 (2004).
[Crossref]

Tavella, F.

Thomas, B. K.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

Tishchenko, A. V.

Torizuka, K.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Tschentscher, T.

Tünnermann, A.

F. Tavella, A. Willner, J. Rothhardt, S. Hädrich, E. Seise, S. Düsterer, T. Tschentscher, H. Schlarb, J. Feldhaus, J. Limpert, A. Tünnermann, and J. Rossbach, “Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA,” Opt. Express 18, 4689–4694 (2010).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett. 34, 3788–3790 (2009).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Self-phase modulation compensated by positive dispersion in chirped-pulse systems,” Opt. Express 17, 4997–5007 (2009).
[Crossref] [PubMed]

D. N. Schimpf, T. Eidam, E. Seise, S. Hädrich, J. Limpert, and A. Tünnermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity,” Opt. Express 17, 18774–18781 (2009).
[Crossref]

S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17, 3913–3922 (2009).
[Crossref] [PubMed]

D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16, 17637–17646 (2008).
[Crossref] [PubMed]

D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express 16, 8876–8886 (2008).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16, 10664–10674 (2008).
[Crossref] [PubMed]

T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008).
[Crossref] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007).
[Crossref] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber laser,” Opt. Express 14, 2715–2720 (2006).
[Crossref] [PubMed]

Unger, S.

Vu, K. T.

Wang, J. S.

V. L. da Silva, Y. Silberberg, J. S. Wang, E. L. Goldstein, and M. J. Andrejco, “Automatic gain flattening in optical fiber amplifiers via clamping of inhomogeneous gain,” IEEE Photon. Technol. Lett. 5, 412–414 (1993).
[Crossref]

Whitbread, T.

Willner, A.

Wilson, K. R.

Wirth, C.

Wise, F.

Wise, F. W.

Yahel, E.

Yakovlev, V. V.

Yamakawa, K.

Yamanaka, M.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, “Feedback control for accurate shaping of ultrashort optical pulses prior to CPA,” Jpn. J. Appl. Phys., Part 1 43, 1366–1375 (2004).
[Crossref]

Yoshitomi, D.

Yvernault, P.

Zaouter, Y.

Zhou, S.

Zhou, X.

Appl. Phys. B (2)

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88, 515–518 (2007).
[Crossref]

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, “Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning,” Appl. Phys. B 70, S133–S141 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (6)

L. Shah and M. E. Fermann, “High-power ultrashort-pulse fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 552–558 (2007).
[Crossref]

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Schonnagel, and W. Sandner, “Broadband amplification of 800-nm pulses with a combination of negatively and positively chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 194–200 (2006).
[Crossref]

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, “Compensation of gain narrowing by self-phase modulation in high-energy ultrafast fiber chirped-pulse amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 182–186 (2009).
[Crossref]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (1)

V. L. da Silva, Y. Silberberg, J. S. Wang, E. L. Goldstein, and M. J. Andrejco, “Automatic gain flattening in optical fiber amplifiers via clamping of inhomogeneous gain,” IEEE Photon. Technol. Lett. 5, 412–414 (1993).
[Crossref]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys., Part 1 (1)

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, “Feedback control for accurate shaping of ultrashort optical pulses prior to CPA,” Jpn. J. Appl. Phys., Part 1 43, 1366–1375 (2004).
[Crossref]

Nat. Photonics (1)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Opt. Commun. (2)

D. M. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti: sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[Crossref]

Opt. Express (14)

T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008).
[Crossref] [PubMed]

J. Prawiharjo, N. K. Daga, R. Geng, J. H. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express 16, 15074–15089 (2008).
[Crossref] [PubMed]

S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express 13, 4869–4877 (2005).
[Crossref] [PubMed]

F. He, J. H. Price, K. T. Vu, A. Malinowski, J. K. Sahu, and D. J. Richardson, “Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling,” Opt. Express 14, 12846–12858 (2006).
[Crossref] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber laser,” Opt. Express 14, 2715–2720 (2006).
[Crossref] [PubMed]

D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16, 17637–17646 (2008).
[Crossref] [PubMed]

D. N. Schimpf, T. Eidam, E. Seise, S. Hädrich, J. Limpert, and A. Tünnermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity,” Opt. Express 17, 18774–18781 (2009).
[Crossref]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16, 10664–10674 (2008).
[Crossref] [PubMed]

D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express 16, 8876–8886 (2008).
[Crossref] [PubMed]

S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17, 3913–3922 (2009).
[Crossref] [PubMed]

F. Tavella, A. Willner, J. Rothhardt, S. Hädrich, E. Seise, S. Düsterer, T. Tschentscher, H. Schlarb, J. Feldhaus, J. Limpert, A. Tünnermann, and J. Rossbach, “Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA,” Opt. Express 18, 4689–4694 (2010).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Self-phase modulation compensated by positive dispersion in chirped-pulse systems,” Opt. Express 17, 4997–5007 (2009).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16, 15540–15545 (2008).
[Crossref] [PubMed]

X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16, 7055–7059 (2008).
[Crossref] [PubMed]

Opt. Lett. (13)

S. Zhou, T. Takamido, S. Imai, and F. Wise, “Exploitation of stimulated Raman scattering in short-pulse fiber amplifiers,” Opt. Lett. 35, 2397–2399 (2010).
[Crossref] [PubMed]

C. P. J. Barty, T. Guo, C. Le Blanc, F. Raski, C. Rose Petruck, I. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668–670 (1996).
[Crossref] [PubMed]

Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, “Transform-limited 100 μJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher–compressor,” Opt. Lett. 33, 1527–1529 (2008).
[Crossref] [PubMed]

H. Kalaycioglu, B. Oktem, Ç. Senel, P. P. Paltani, and F. Ö. Ilday, “Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35, 959–961 (2010).
[Crossref] [PubMed]

L. Kuznetsova, A. Chong, and F. W. Wise, “Interplay of nonlinearity and gain shaping in femtosecond fiber amplifiers,” Opt. Lett. 31, 2640–2642 (2006).
[Crossref] [PubMed]

A. Braun, S. Kane, and T. Norris, “Compensation of self-phase modulation in chirped-pulse amplification laser systems,” Opt. Lett. 22, 615–617 (1997).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[Crossref] [PubMed]

D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett. 34, 3788–3790 (2009).
[Crossref] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007).
[Crossref] [PubMed]

L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett. 32, 2671–2673 (2007).
[Crossref] [PubMed]

Y. Deng, C.-Y. Chien, B. G. Fidric, and J. D. Kafka, “Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier,” Opt. Lett. 34, 3469–3471 (2009).
[Crossref] [PubMed]

E. Yahel, O. Hess, and A. Hardy, “Analysis of nonlinear gain-induced effects on short-pulse amplification in doped fibers by use of an extended power equation,” Opt. Lett. 32, 118–120 (2007).
[Crossref]

V. V. Lozovoy, I. Pastirk, and Ma. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

Other (6)

Software LIEKKI Application Designer, http://www.nlight.net.

M. J. F. Digonnet and S. Savin, “Inhomogeneous broadening to modify the gain of an optical amplifier,” U.S. patent 6,356,385 (March 12, 2002).

A. E. Siegman, Lasers (University Science Books, 1986).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

T. Feurer, Institute of Applied Physics, University of Bern, Switzerland (personal communication, 2009).

M. E. Fermann, G. Imeshev, G. C. Cho, Z. Liu, and D. J. Harter, “All-fiber chirped pulse amplification system,” U.S. patent 7,414,780 (August 19, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Absorption and emission cross-section of ytterbium in a germanosilicate host (data according to [27]).

Fig. 2
Fig. 2

Small signal gain coefficient as a function of the wavelength for different (average) inversion levels.

Fig. 3
Fig. 3

Schematic illustration of the discretization used to model broadband saturated fiber CPA systems.

Fig. 4
Fig. 4

Amplifier length, required to obtain a 20 dB gain in energy, as a function of the central wavelength and the FWHM of the input spectrum.

Fig. 5
Fig. 5

Difference between the mean wavelengths of the output and the input spectra as a function of the central wavelength and the FWHM of the input spectrum.

Fig. 6
Fig. 6

Ratio of the RMS bandwidths of the output and the input spectra as a function of the central wavelength and the FWHM of the input spectrum.

Fig. 7
Fig. 7

Peak power of the transform-limited output pulse as a function of the central wavelength and the FWHM of the input spectrum.

Fig. 8
Fig. 8

Maximum phase-shift of the total SPM, which is acquired by the pulse during amplification, as a function of the central wavelength and the FWHM of the input spectrum.

Fig. 9
Fig. 9

Relative peak power (i.e., ratio of actual peak power, after best compression of the SPM phase with a parabolic phase due to stretcher-compressor mismatch, and the peak power of the transform-limited output pulse) as a function of the central wavelength and the FWHM of the input spectrum.

Fig. 10
Fig. 10

Up-CPA of a sech 2 -spectrum with a bandwidth of 12 nm (FWHM). For total energy gains of 10 and 20 dB (saturation) of the amplification ( J in = 0.01 × 30   J / cm 2 , N tot = 3 × 10 25   ions / m 3 , relative inversion = 0.3 ) (a) shows the length of the active fiber that is required to achieve the same energy gains of 10 and 20 dB for the different central wavelengths, (b) shift of the spectrum, and (c) relative bandwidth change as a function of the central wavelength of the input spectrum.

Fig. 11
Fig. 11

Down-CPA of a sech 2 -spectrum with a bandwidth of 12 nm (FWHM). For total energy gains of 10 and 20 dB (saturation) of the amplification ( J in = 0.01 × 30   J / cm 2 , N tot = 3 × 10 25   ions / m 3 , relative inversion = 0.3 ) (a) shows the length of the active fiber that is required to achieve the same energy gains of 10 and 20 dB for the different central wavelengths, (b) shift of the spectrum, and (c) relative bandwidth change as a function of the central wavelength of the input spectrum.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G 0 ( υ ) = exp ( 0 L d z [ σ 21 ( υ ) n 2 ( z ) σ 12 ( υ ) ( n 0 n 2 ( z ) ) ] ) = exp ( g 0 L ) .
g 0 = n 0 [ σ 21 ( υ ) n 2 ¯ n 0 σ 12 ( υ ) ( 1 n 2 ¯ n 0 ) ] ,
Ω = T / ϕ ( 2 ) ,
I ( T ) = S ̂ s ( T / ϕ ( 2 ) ) / ( 2 π | ϕ ( 2 ) | ) ,
d d z I m = [ σ 21 ( υ m ) n 2 ( z m ) σ 12 ( υ m ) ( n 0 n 2 ( z m ) ) ] I m ,
n 2 , new ( z m ) = n 2 ( z m ) [ J m , new J m ] / ( Δ z h υ m ) .
Δ Ω new Δ Ω Δ Ω = B ϕ ( 2 ) | s ( 0 ) | B ϕ ( 2 ) ( Δ Ω ) 2 ,

Metrics