Abstract

A simple scheme is proposed to implement a two-qubit linear optical quantum iSWAP gate that is a universal gate in quantum computation and quantum information processing. By the interference effect of the polarized photons, a quantum iSWAP gate can be achieved with a low success probability (η432, with η being the quantum efficiency of photon detectors). The scheme is based only on simple linear optical elements, a pair of two-photon polarization entangled states, and conventional photon detectors that only distinguish the vacuum and nonvacuum Fock number states, which greatly decreases the experimental difficulty of implementing linear optical quantum computation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Shor, “Algorithms for quantum computer computation: discrete logarithms and factoring,” in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California (IEEE, 1994), pp. 124-134.
  2. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
    [CrossRef]
  3. M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschr. Phys. 46, 493-505 (1998).
    [CrossRef]
  4. A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” ArXiv.org e-print, 9511026, 1995, http://arxiv.org/abs/9511026.
  5. D. Simon, “On the power of quantum computation,” in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California (IEEE, 1994), pp. 116-123.
  6. R. Jozsa, “Quantum algorithms and the Fourier transform,” ArXiv.org e-print, 9707033, 1997, http://arxiv.org/abs/9707033.
  7. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
    [CrossRef]
  8. D. Gottesman and I. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
    [CrossRef]
  9. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
    [CrossRef] [PubMed]
  10. C. Y. Chen, M. Feng, and K. L. Gao, “Toffoli gate originating from a single resonant interaction with cavity QED,” Phys. Rev. A 73, 064304 (2006).
    [CrossRef]
  11. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
    [CrossRef]
  12. X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
    [CrossRef]
  13. X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate,” Phys. Rev. A 74, 044305 (2006).
    [CrossRef]
  14. A. M. Childs, I. L. Chuang, and D. W. Leung, “Realization of quantum process tomography in NMR,” Phys. Rev. A 64, 012314 (2001).
    [CrossRef]
  15. N. Schuch and J. Siewert, “Natural two-qubit gate for quantum computation using the XY interaction,” Phys. Rev. A 67, 032301 (2003).
    [CrossRef]
  16. T. Tanamoto, K. Maruyama, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient purification protocols using iSWAP gates in solid-state qubits,” Phys. Rev. A 78, 062313 (2008).
    [CrossRef]
  17. T. Tanamoto, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Phys. Rev. Lett. 102, 100501 (2000).
    [CrossRef]
  18. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
    [CrossRef]
  19. S. M. Barnett, L. S. Phillips, and D. T. Pegg, “Imperfect photodetection as projection onto mixed states,” Opt. Commun. 158, 45-49 (1998).
    [CrossRef]
  20. S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A 65, 062317 (2002).
    [CrossRef]
  21. Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54-57 (1988).
    [CrossRef] [PubMed]
  22. F. DeMartini, G. DiGiuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996).
    [CrossRef]
  23. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691-695 (1977).
    [CrossRef]
  24. S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534-3537 (2001).
    [CrossRef] [PubMed]
  25. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000).
    [CrossRef] [PubMed]
  26. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500-503 (1999).
    [CrossRef]
  27. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
    [CrossRef] [PubMed]
  28. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513-2516 (2000).
    [CrossRef] [PubMed]

2008 (1)

T. Tanamoto, K. Maruyama, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient purification protocols using iSWAP gates in solid-state qubits,” Phys. Rev. A 78, 062313 (2008).
[CrossRef]

2007 (1)

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

2006 (3)

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

C. Y. Chen, M. Feng, and K. L. Gao, “Toffoli gate originating from a single resonant interaction with cavity QED,” Phys. Rev. A 73, 064304 (2006).
[CrossRef]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

2003 (1)

N. Schuch and J. Siewert, “Natural two-qubit gate for quantum computation using the XY interaction,” Phys. Rev. A 67, 032301 (2003).
[CrossRef]

2002 (1)

S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A 65, 062317 (2002).
[CrossRef]

2001 (3)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[CrossRef]

A. M. Childs, I. L. Chuang, and D. W. Leung, “Realization of quantum process tomography in NMR,” Phys. Rev. A 64, 012314 (2001).
[CrossRef]

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534-3537 (2001).
[CrossRef] [PubMed]

2000 (4)

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513-2516 (2000).
[CrossRef] [PubMed]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
[CrossRef] [PubMed]

T. Tanamoto, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Phys. Rev. Lett. 102, 100501 (2000).
[CrossRef]

1999 (4)

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
[CrossRef]

D. Gottesman and I. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
[CrossRef]

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500-503 (1999).
[CrossRef]

1998 (2)

M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschr. Phys. 46, 493-505 (1998).
[CrossRef]

S. M. Barnett, L. S. Phillips, and D. T. Pegg, “Imperfect photodetection as projection onto mixed states,” Opt. Commun. 158, 45-49 (1998).
[CrossRef]

1997 (1)

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

1996 (1)

F. DeMartini, G. DiGiuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996).
[CrossRef]

1988 (1)

Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54-57 (1988).
[CrossRef] [PubMed]

1977 (1)

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691-695 (1977).
[CrossRef]

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Awschalom, D. D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Barnett, S. M.

S. M. Barnett, L. S. Phillips, and D. T. Pegg, “Imperfect photodetection as projection onto mixed states,” Opt. Commun. 158, 45-49 (1998).
[CrossRef]

Benson, O.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513-2516 (2000).
[CrossRef] [PubMed]

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500-503 (1999).
[CrossRef]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
[CrossRef]

Boyer, M.

M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschr. Phys. 46, 493-505 (1998).
[CrossRef]

Brassard, G.

M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschr. Phys. 46, 493-505 (1998).
[CrossRef]

Brattke, S.

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534-3537 (2001).
[CrossRef] [PubMed]

Brune, M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
[CrossRef]

Buratto, S. K.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Burkard, G.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Carson, P. J.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Chen, C. Y.

C. Y. Chen, M. Feng, and K. L. Gao, “Toffoli gate originating from a single resonant interaction with cavity QED,” Phys. Rev. A 73, 064304 (2006).
[CrossRef]

Childs, A. M.

A. M. Childs, I. L. Chuang, and D. W. Leung, “Realization of quantum process tomography in NMR,” Phys. Rev. A 64, 012314 (2001).
[CrossRef]

Chuang, I.

D. Gottesman and I. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
[CrossRef]

Chuang, I. L.

A. M. Childs, I. L. Chuang, and D. W. Leung, “Realization of quantum process tomography in NMR,” Phys. Rev. A 64, 012314 (2001).
[CrossRef]

Dagenais, M.

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691-695 (1977).
[CrossRef]

DeMartini, F.

F. DeMartini, G. DiGiuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996).
[CrossRef]

DiGiuseppe, G.

F. DeMartini, G. DiGiuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996).
[CrossRef]

DiVincenzo, D. P.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Feng, M.

C. Y. Chen, M. Feng, and K. L. Gao, “Toffoli gate originating from a single resonant interaction with cavity QED,” Phys. Rev. A 73, 064304 (2006).
[CrossRef]

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[CrossRef]

Gao, K. L.

C. Y. Chen, M. Feng, and K. L. Gao, “Toffoli gate originating from a single resonant interaction with cavity QED,” Phys. Rev. A 73, 064304 (2006).
[CrossRef]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Gershoni, D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Glancy, S.

S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A 65, 062317 (2002).
[CrossRef]

Gottesman, D.

D. Gottesman and I. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
[CrossRef]

Grover, L. K.

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

Guo, G. C.

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
[CrossRef] [PubMed]

Haroche, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
[CrossRef]

Hoyer, P.

M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschr. Phys. 46, 493-505 (1998).
[CrossRef]

Hu, X. D.

T. Tanamoto, K. Maruyama, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient purification protocols using iSWAP gates in solid-state qubits,” Phys. Rev. A 78, 062313 (2008).
[CrossRef]

T. Tanamoto, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Phys. Rev. Lett. 102, 100501 (2000).
[CrossRef]

Imamoglu, A.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[CrossRef]

Jozsa, R.

R. Jozsa, “Quantum algorithms and the Fourier transform,” ArXiv.org e-print, 9707033, 1997, http://arxiv.org/abs/9707033.

Kan, H.

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500-503 (1999).
[CrossRef]

Kim, J.

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500-503 (1999).
[CrossRef]

Kimble, H. J.

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691-695 (1977).
[CrossRef]

Kitaev, A. Y.

A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” ArXiv.org e-print, 9511026, 1995, http://arxiv.org/abs/9511026.

Leung, D. W.

A. M. Childs, I. L. Chuang, and D. W. Leung, “Realization of quantum process tomography in NMR,” Phys. Rev. A 64, 012314 (2001).
[CrossRef]

Li, K.

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Liu, Y. X.

T. Tanamoto, K. Maruyama, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient purification protocols using iSWAP gates in solid-state qubits,” Phys. Rev. A 78, 062313 (2008).
[CrossRef]

T. Tanamoto, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Phys. Rev. Lett. 102, 100501 (2000).
[CrossRef]

LoSecco, J. M.

S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A 65, 062317 (2002).
[CrossRef]

Loss, D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Mandel, L.

Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54-57 (1988).
[CrossRef] [PubMed]

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691-695 (1977).
[CrossRef]

Marrocco, M.

F. DeMartini, G. DiGiuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996).
[CrossRef]

Maruyama, K.

T. Tanamoto, K. Maruyama, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient purification protocols using iSWAP gates in solid-state qubits,” Phys. Rev. A 78, 062313 (2008).
[CrossRef]

Mason, M. D.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
[CrossRef]

Nori, F.

T. Tanamoto, K. Maruyama, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient purification protocols using iSWAP gates in solid-state qubits,” Phys. Rev. A 78, 062313 (2008).
[CrossRef]

T. Tanamoto, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Phys. Rev. Lett. 102, 100501 (2000).
[CrossRef]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
[CrossRef]

Ou, Z. Y.

Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54-57 (1988).
[CrossRef] [PubMed]

Pegg, D. T.

S. M. Barnett, L. S. Phillips, and D. T. Pegg, “Imperfect photodetection as projection onto mixed states,” Opt. Commun. 158, 45-49 (1998).
[CrossRef]

Pelton, M.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513-2516 (2000).
[CrossRef] [PubMed]

Petroff, P. M.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Phillips, L. S.

S. M. Barnett, L. S. Phillips, and D. T. Pegg, “Imperfect photodetection as projection onto mixed states,” Opt. Commun. 158, 45-49 (1998).
[CrossRef]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[CrossRef]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Raimond, J. M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
[CrossRef]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
[CrossRef]

Santori, C.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513-2516 (2000).
[CrossRef] [PubMed]

Schuch, N.

N. Schuch and J. Siewert, “Natural two-qubit gate for quantum computation using the XY interaction,” Phys. Rev. A 67, 032301 (2003).
[CrossRef]

Sherwin, M.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Shor, P. W.

P. W. Shor, “Algorithms for quantum computer computation: discrete logarithms and factoring,” in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California (IEEE, 1994), pp. 124-134.

Siewert, J.

N. Schuch and J. Siewert, “Natural two-qubit gate for quantum computation using the XY interaction,” Phys. Rev. A 67, 032301 (2003).
[CrossRef]

Simon, D.

D. Simon, “On the power of quantum computation,” in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California (IEEE, 1994), pp. 116-123.

Small, A.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Strouse, G. F.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Tanamoto, T.

T. Tanamoto, K. Maruyama, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient purification protocols using iSWAP gates in solid-state qubits,” Phys. Rev. A 78, 062313 (2008).
[CrossRef]

T. Tanamoto, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Phys. Rev. Lett. 102, 100501 (2000).
[CrossRef]

Tanner, C. E.

S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A 65, 062317 (2002).
[CrossRef]

Tapp, A.

M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschr. Phys. 46, 493-505 (1998).
[CrossRef]

Varcoe, B. T. H.

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534-3537 (2001).
[CrossRef] [PubMed]

Vasconcelos, H. M.

S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A 65, 062317 (2002).
[CrossRef]

Walther, H.

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534-3537 (2001).
[CrossRef] [PubMed]

Yamamoto, Y.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513-2516 (2000).
[CrossRef] [PubMed]

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500-503 (1999).
[CrossRef]

Zhang, S. L.

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

Zheng, S. B.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
[CrossRef] [PubMed]

Zou, X. B.

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

Fortschr. Phys. (1)

M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschr. Phys. 46, 493-505 (1998).
[CrossRef]

Nature (3)

D. Gottesman and I. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999).
[CrossRef]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500-503 (1999).
[CrossRef]

Opt. Commun. (1)

S. M. Barnett, L. S. Phillips, and D. T. Pegg, “Imperfect photodetection as projection onto mixed states,” Opt. Commun. 158, 45-49 (1998).
[CrossRef]

Phys. Rev. A (8)

S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A 65, 062317 (2002).
[CrossRef]

C. Y. Chen, M. Feng, and K. L. Gao, “Toffoli gate originating from a single resonant interaction with cavity QED,” Phys. Rev. A 73, 064304 (2006).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[CrossRef]

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

A. M. Childs, I. L. Chuang, and D. W. Leung, “Realization of quantum process tomography in NMR,” Phys. Rev. A 64, 012314 (2001).
[CrossRef]

N. Schuch and J. Siewert, “Natural two-qubit gate for quantum computation using the XY interaction,” Phys. Rev. A 67, 032301 (2003).
[CrossRef]

T. Tanamoto, K. Maruyama, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient purification protocols using iSWAP gates in solid-state qubits,” Phys. Rev. A 78, 062313 (2008).
[CrossRef]

Phys. Rev. Lett. (11)

T. Tanamoto, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Phys. Rev. Lett. 102, 100501 (2000).
[CrossRef]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
[CrossRef] [PubMed]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54-57 (1988).
[CrossRef] [PubMed]

F. DeMartini, G. DiGiuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996).
[CrossRef]

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691-695 (1977).
[CrossRef]

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534-3537 (2001).
[CrossRef] [PubMed]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513-2516 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999).
[CrossRef]

Other (4)

P. W. Shor, “Algorithms for quantum computer computation: discrete logarithms and factoring,” in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California (IEEE, 1994), pp. 124-134.

A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” ArXiv.org e-print, 9511026, 1995, http://arxiv.org/abs/9511026.

D. Simon, “On the power of quantum computation,” in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California (IEEE, 1994), pp. 116-123.

R. Jozsa, “Quantum algorithms and the Fourier transform,” ArXiv.org e-print, 9707033, 1997, http://arxiv.org/abs/9707033.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Quantum circuit for implementing a CNS gate that is a combination of CNOT and SWAP gates by using an iSWAP gate and one-qubit rotation gates. Here H denotes a Hadamard gate transformation, and R z θ = e i θ σ z 2 . (b) Schematic diagram for the quantum encoder circuit. PBS i ( i = 1 , 2 ) denotes polarization splitter, which transmits the horizontal polarization and reflects vertical polarization. R 22.5 denotes a 22.5° tilted HWP, and D 5 ( 6 ) are detectors. (c) Schematic diagram for the action of the PBS.

Fig. 2
Fig. 2

Schematic setup of implementing a two-qubit linear optical quantum iSWAP gate. F denotes the encoding transformation shown in Fig. 1b, R 45 denotes a 45° tilted HWP, R 67.5 denotes a 67.5° -tilted HWP, and PM i ( i = 1 , 2 ) are phase modulators.

Fig. 3
Fig. 3

The total success probability for implementing two-qubit linear optical quantum iSWAP gate, P vs. η.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

| 00 12 | 00 12 , | 01 12 i | 10 12 , | 10 12 i | 01 12 ,
| 11 12 | 11 12 .
| H 1 2 ( | H + | V ) ,
| V 1 2 ( | H | V ) ,
1 2 ( α | H 1 + β | V 1 ) ( | H 2 | H 3 + | V 2 | V 3 ) 1 2 [ | H 5 ( α | H 2 | H 3 + β | V 2 | V 3 ) + | V 6 ( α | H 2 | H 3 β | V 2 | V 3 ) ] + 1 2 α | H V 2 | V 3 + 1 2 β ( | 2 H 5 | 2 V 6 ) | H 3 .
Π c 0 = m = 0 ( 1 η ) m | m m | ,
Π c 1 = 1 Π c 0 = m = 0 [ 1 ( 1 η ) m ] | m m | ,
α | H 1 + β | V 1 α | H 2 | H 3 + β | V 2 | V 3 ,
α 1 | H a 1 | H a 2 + α 2 | H a 1 | V a 2 + α 3 | V a 1 | H a 2 + α 4 | V a 1 | V a 2 ,
α 1 | H b 1 | H b 2 | H b 3 | H b 4 + α 2 | H b 1 | H b 2 | V b 3 | V b 4 + α 3 | V b 1 | V b 2 | H b 3 | H b 4 + α 4 | V b 1 | V b 2 | V b 3 | V b 4 ,
1 2 [ α 1 | H b 1 | H b 2 | H b 3 ( | H b 4 + | V b 4 ) + α 2 e i φ | H b 1 | H b 2 | V b 3 ( | H b 4 | V b 4 ) + α 3 e i φ | V b 1 | V b 2 | H b 3 ( | H b 4 + | V b 4 ) + α 4 e i 2 φ | V b 1 | V b 2 | V b 3 ( | H b 4 | V b 4 ) ] .
1 2 [ α 1 | H b 10 | H b 5 | H b 8 ( | H b 9 + | V b 10 ) + α 2 e i φ | H b 10 | H b 5 | V b 7 ( | H b 9 | V b 10 ) + α 3 e i φ | V b 9 | V b 6 | H b 8 ( | H b 9 + | V b 10 ) + α 4 e i 2 φ | V b 9 | V b 6 | V b 7 ( | H b 9 | V b 10 ) ] .
1 2 [ α 1 | H b 10 | V c 3 | V c 4 ( | H b 9 + | V b 10 ) + α 2 e i φ | H b 10 | V c 3 | H c 1 ( | H b 9 | V b 10 ) + α 3 e i φ | V b 9 | H c 2 | V c 4 ( | H b 9 + | V b 10 ) + α 4 e i 2 φ | V b 9 | H c 2 | H c 1 ( | H b 9 | V b 10 ) ] .
| H 1 2 ( | V | H ) ,
| V 1 2 ( | V + | H ) .
1 4 2 { α 1 ( | H e 6 + | V e 5 ) ( | H e 2 | V e 2 ) ( | H e 1 | V e 1 ) [ ( | H e 3 + | V e 4 ) + ( | H e 6 | V e 5 ) ] + α 2 e i φ ( | H e 6 + | V e 5 ) ( | H e 2 | V e 2 ) ( | V e 1 | H e 1 ) [ ( | H e 3 + | V e 4 ) ( | H e 6 | V e 5 ) ] + α 3 e i φ ( | H e 3 | V e 4 ) ( | V e 2 | H e 2 ) ( | H e 1 | V e 1 ) [ ( | H e 3 + | V e 4 ) + ( | H e 6 | V e 5 ) ] + α 4 e i 2 φ ( | H e 3 | V e 4 ) ( | V e 2 | H e 2 ) ( | V e 1 | H e 1 ) [ ( | H e 3 + | V e 4 ) ( | H e 6 | V e 5 ) ] } .
α 1 | H e 1 | H e 2 + α 2 e i φ | V e 1 | H e 2 + α 3 e i φ | H e 1 | V e 2 α 4 e i 2 φ | V e 1 | V e 2 ,
α 1 | H e 1 | H e 2 + α 2 e i φ | V e 1 | H e 2 α 3 e i φ | H e 1 | V e 2 + α 4 e i 2 φ | V e 1 | V e 2 ,
α 1 | H e 1 | H e 2 + i α 2 | V e 1 | H e 2 + i α 3 | H e 1 | V e 2 + α 4 | V e 1 | V e 2 .
P = 2 P e P o = η 4 32 ,

Metrics