Abstract

Transmission characteristics of lens-duct, Cytop planar photonic crystal waveguide (PPCW) and hollow-core microstructured optical fiber were analyzed in the terahertz (THz) region. The lens duct was able to channel and couple the THz radiation into a Teflon waveguide with a loss of about 0.7dB. Single-mode propagation and frequency-selective properties were achieved using PPCW whose central frequency is at 0.45THz. Results of time-domain spectra of the hollow-core microstructured polymer optical fiber showed a difference of about 20ps between the THz waves that propagated in the core and cladding. Frequency shift of the transmission bands between waveguides of different size suggested photonic bandgap guidance. Finite-difference time domain calculations agreed relatively well to the experimental results of PPCW and hollow-core fibers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003).
    [CrossRef] [PubMed]
  2. M. Johnston, L. Herz, A. Khan, A. Kohler, A. Davies, and E. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256-262 (2003).
    [CrossRef]
  3. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
    [CrossRef]
  4. R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734-738 (2003).
    [CrossRef] [PubMed]
  5. J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
    [CrossRef]
  6. M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85, 191-193 (2004).
    [CrossRef]
  7. G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
    [CrossRef]
  8. R. Beach, “Theory and optimization of lens ducts,” Appl. Opt. 35, 2005-2015 (1996).
    [CrossRef] [PubMed]
  9. G. Chantry, J. Fleming, and P. Smith, “Far infrared and millimetre-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10, 473-477 (1971).
    [CrossRef]
  10. J. Birch, J. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225-228 (1981).
    [CrossRef]
  11. G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
    [CrossRef]
  12. E. Palik and R. Holm, Handbook of Optical Constants of Solids, E.Palik, ed., (Academic, 1985), p. 479.
  13. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
    [CrossRef]
  14. Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. Ho, and T. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961-2963 (2000).
    [CrossRef]
  15. A. Bendada, Y. Simard, and M. Lamontagne, “Effect of shrinkage and process parameters on the monitoring of bulk and surface stream temperatures in injection molding via the infrared waveguide method,” Polym. Eng. Sci. 44, 955-964 (2004).
    [CrossRef]
  16. H. Liu, G. Peng, and P. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151-156 (2002).
    [CrossRef]
  17. C. S. Ponseca, Jr., R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902-904 (2008).
    [CrossRef] [PubMed]
  18. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  19. A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, “Hollow-core microstructured polymer optical fiber,” Opt. Lett. 31, 172-174 (2006).
    [CrossRef] [PubMed]
  20. G. W. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325-335 (2004).
    [CrossRef]
  21. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).
  22. N. Issa, A. Argyros, M. A. van Eijkelenborg, and J. Zagari, “Identifying hollow waveguide modes in photonic band-gap waveguides,” Opt. Express 11, 996-1001 (2003).
    [CrossRef] [PubMed]
  23. A. Argyros, N. A. Issa, I. M. Bassett, and M. A. van Eijkelenborg, “Microstructured optical fiber for single-polarization air guidance,” Opt. Lett. 29, 20-22 (2004).
    [CrossRef] [PubMed]
  24. A. Argyros, I. Bassett, M. A. van Eijkelenborg, and M. C. J. Large, “Analysis of ring-structured Bragg fibres for single TE mode guidance,” Opt. Express 12, 2688-2698 (2001).
    [CrossRef]

2008 (1)

2007 (1)

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

2006 (4)

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, “Hollow-core microstructured polymer optical fiber,” Opt. Lett. 31, 172-174 (2006).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

2005 (1)

G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
[CrossRef]

2004 (5)

G. W. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85, 191-193 (2004).
[CrossRef]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

A. Bendada, Y. Simard, and M. Lamontagne, “Effect of shrinkage and process parameters on the monitoring of bulk and surface stream temperatures in injection molding via the infrared waveguide method,” Polym. Eng. Sci. 44, 955-964 (2004).
[CrossRef]

A. Argyros, N. A. Issa, I. M. Bassett, and M. A. van Eijkelenborg, “Microstructured optical fiber for single-polarization air guidance,” Opt. Lett. 29, 20-22 (2004).
[CrossRef] [PubMed]

2003 (4)

R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734-738 (2003).
[CrossRef] [PubMed]

M. Johnston, L. Herz, A. Khan, A. Kohler, A. Davies, and E. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256-262 (2003).
[CrossRef]

N. Issa, A. Argyros, M. A. van Eijkelenborg, and J. Zagari, “Identifying hollow waveguide modes in photonic band-gap waveguides,” Opt. Express 11, 996-1001 (2003).
[CrossRef] [PubMed]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Liu, G. Peng, and P. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151-156 (2002).
[CrossRef]

2001 (1)

2000 (1)

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. Ho, and T. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961-2963 (2000).
[CrossRef]

1996 (1)

1981 (1)

J. Birch, J. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225-228 (1981).
[CrossRef]

1971 (1)

G. Chantry, J. Fleming, and P. Smith, “Far infrared and millimetre-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10, 473-477 (1971).
[CrossRef]

Aosaki, K.

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

Argyros, A.

Barton, G. W.

G. W. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Bassett, I.

Bassett, I. M.

Beach, R.

Bendada, A.

A. Bendada, Y. Simard, and M. Lamontagne, “Effect of shrinkage and process parameters on the monitoring of bulk and surface stream temperatures in injection molding via the infrared waveguide method,” Polym. Eng. Sci. 44, 955-964 (2004).
[CrossRef]

Birch, J.

J. Birch, J. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225-228 (1981).
[CrossRef]

Carnahan, M. A.

R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734-738 (2003).
[CrossRef] [PubMed]

Chantry, G.

G. Chantry, J. Fleming, and P. Smith, “Far infrared and millimetre-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10, 473-477 (1971).
[CrossRef]

Chemla, D. S.

R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734-738 (2003).
[CrossRef] [PubMed]

Chu, P.

H. Liu, G. Peng, and P. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151-156 (2002).
[CrossRef]

Davies, A.

M. Johnston, L. Herz, A. Khan, A. Kohler, A. Davies, and E. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256-262 (2003).
[CrossRef]

de los Reyes, G.

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

Diwa, G.

G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
[CrossRef]

Dromey, J.

J. Birch, J. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225-228 (1981).
[CrossRef]

Estacio, E.

C. S. Ponseca, Jr., R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902-904 (2008).
[CrossRef] [PubMed]

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
[CrossRef]

Fleming, J.

G. Chantry, J. Fleming, and P. Smith, “Far infrared and millimetre-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10, 473-477 (1971).
[CrossRef]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Hagele, D.

R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734-738 (2003).
[CrossRef] [PubMed]

Hangyo, M.

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85, 191-193 (2004).
[CrossRef]

Harrington, J. A.

J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
[CrossRef]

Hayashi, A.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Hayashi, S.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Henry, G.

G. W. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Herz, L.

M. Johnston, L. Herz, A. Khan, A. Kohler, A. Davies, and E. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256-262 (2003).
[CrossRef]

Ho, S.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. Ho, and T. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961-2963 (2000).
[CrossRef]

Holm, R.

E. Palik and R. Holm, Handbook of Optical Constants of Solids, E.Palik, ed., (Academic, 1985), p. 479.

Inoue, H.

Issa, N.

Issa, N. A.

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

Johnston, M.

M. Johnston, L. Herz, A. Khan, A. Kohler, A. Davies, and E. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256-262 (2003).
[CrossRef]

Kaindl, R. A.

R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734-738 (2003).
[CrossRef] [PubMed]

Kato, E.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Kawai, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Kawase, K.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003).
[CrossRef] [PubMed]

Khan, A.

M. Johnston, L. Herz, A. Khan, A. Kohler, A. Davies, and E. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256-262 (2003).
[CrossRef]

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

Kim, S.-S.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. Ho, and T. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961-2963 (2000).
[CrossRef]

Kohler, A.

M. Johnston, L. Herz, A. Khan, A. Kohler, A. Davies, and E. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256-262 (2003).
[CrossRef]

Lamontagne, M.

A. Bendada, Y. Simard, and M. Lamontagne, “Effect of shrinkage and process parameters on the monitoring of bulk and surface stream temperatures in injection molding via the infrared waveguide method,” Polym. Eng. Sci. 44, 955-964 (2004).
[CrossRef]

Large, M. C. J.

Lesurf, J.

J. Birch, J. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225-228 (1981).
[CrossRef]

Linfield, E.

M. Johnston, L. Herz, A. Khan, A. Kohler, A. Davies, and E. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256-262 (2003).
[CrossRef]

Liu, H.

H. Liu, G. Peng, and P. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151-156 (2002).
[CrossRef]

Lovenich, R.

R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734-738 (2003).
[CrossRef] [PubMed]

Lu, W.-K.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. Ho, and T. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961-2963 (2000).
[CrossRef]

Ma, Y.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. Ho, and T. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961-2963 (2000).
[CrossRef]

Marks, T.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. Ho, and T. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961-2963 (2000).
[CrossRef]

Miyamaru, F.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Murakami, H.

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
[CrossRef]

Nakajima, M.

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85, 191-193 (2004).
[CrossRef]

Ogawa, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003).
[CrossRef] [PubMed]

Ono, S.

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
[CrossRef]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Otani, C.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Palik, E.

E. Palik and R. Holm, Handbook of Optical Constants of Solids, E.Palik, ed., (Academic, 1985), p. 479.

Peng, G.

H. Liu, G. Peng, and P. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151-156 (2002).
[CrossRef]

Pobre, R.

C. S. Ponseca, Jr., R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902-904 (2008).
[CrossRef] [PubMed]

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
[CrossRef]

Ponseca, C. S.

C. S. Ponseca, Jr., R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902-904 (2008).
[CrossRef] [PubMed]

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

Quema, A.

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
[CrossRef]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Quiroga, R.

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

Sakane, Y.

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

Sarukura, N.

C. S. Ponseca, Jr., R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902-904 (2008).
[CrossRef] [PubMed]

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
[CrossRef]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Sato, H.

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

Simard, Y.

A. Bendada, Y. Simard, and M. Lamontagne, “Effect of shrinkage and process parameters on the monitoring of bulk and surface stream temperatures in injection molding via the infrared waveguide method,” Polym. Eng. Sci. 44, 955-964 (2004).
[CrossRef]

Smith, P.

G. Chantry, J. Fleming, and P. Smith, “Far infrared and millimetre-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10, 473-477 (1971).
[CrossRef]

St. J. Russell, P.

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Tani, M.

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85, 191-193 (2004).
[CrossRef]

Uchida, K.

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85, 191-193 (2004).
[CrossRef]

van Eijkelenborg, M. A.

Watanabe, Y.

Yoshida, H.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Zagari, J.

G. W. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

N. Issa, A. Argyros, M. A. van Eijkelenborg, and J. Zagari, “Identifying hollow waveguide modes in photonic band-gap waveguides,” Opt. Express 11, 996-1001 (2003).
[CrossRef] [PubMed]

Zhao, Y.-G.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. Ho, and T. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961-2963 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85, 191-193 (2004).
[CrossRef]

G. Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, “Photonic crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Appl. Phys. Lett. 87, 151114 (2005).
[CrossRef]

G. de los Reyes, A. Quema, C. S. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006).
[CrossRef]

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. Ho, and T. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961-2963 (2000).
[CrossRef]

Chem. Phys. Lett. (2)

G. Chantry, J. Fleming, and P. Smith, “Far infrared and millimetre-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10, 473-477 (1971).
[CrossRef]

M. Johnston, L. Herz, A. Khan, A. Kohler, A. Davies, and E. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256-262 (2003).
[CrossRef]

Infrared Phys. (1)

J. Birch, J. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225-228 (1981).
[CrossRef]

J. Korean Phys. Soc. (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Nature (1)

R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734-738 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. Liu, G. Peng, and P. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151-156 (2002).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

G. W. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Opt. Lett. (3)

Polym. Eng. Sci. (1)

A. Bendada, Y. Simard, and M. Lamontagne, “Effect of shrinkage and process parameters on the monitoring of bulk and surface stream temperatures in injection molding via the infrared waveguide method,” Polym. Eng. Sci. 44, 955-964 (2004).
[CrossRef]

Other (2)

E. Palik and R. Holm, Handbook of Optical Constants of Solids, E.Palik, ed., (Academic, 1985), p. 479.

J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of THz lens duct with Teflon photonic crystal fiber termed as pigtail.

Fig. 2
Fig. 2

Frequency spectra of InAs emitter, the transmittance of TPX, InAs emitter with TPX lens duct, and numerically calculated spectra of TPX lens duct.

Fig. 3
Fig. 3

Frequency spectra of lens duct with InAs, the transmittance of Teflon waveguide, experimental and calculated Teflon waveguide with lens duct and InAs emitter.

Fig. 4
Fig. 4

THz radiation power as a function of propagation length. This plot is divided into two regions from 0 3 cm for region I and from 3 18 cm for region II.

Fig. 5
Fig. 5

Schematic diagram of Cytop PPCW.

Fig. 6
Fig. 6

Transmittance spectra of 10- and 30 - mm -long, 0.5 - mm -thick Cytop waveguide.

Fig. 7
Fig. 7

Snapshots of the FDTD calculation of a propagating THz wave in Cytop planar waveguide.

Fig. 8
Fig. 8

THz radiation power as a function of propagation length.

Fig. 9
Fig. 9

(a) Microscope image of the fiber and (b) simplified, idealized structure used in the simulations.

Fig. 10
Fig. 10

Time domain plots of the reference signal, fiber 1, and fiber 2.

Fig. 11
Fig. 11

Snapshots of the simulation showing THz wave propagating on both the core and the microstructured cladding.

Fig. 12
Fig. 12

Calculated and experimental frequency spectra of fibers 1 and 2.

Metrics