Abstract

The waveguide properties of a terahertz wave propagating along conical metal wire have been investigated under the framework of the Sommerfeld model. The effects of composed materials, metal wire diameter, and temperature on the waveguide characteristics have been shown and discussed. The numerical calculation agrees well with the experimental results shown by Ji et al., and it predicts that a metal wire waveguide shows better propagation properties at lower temperature. The ratio of energy density contours demonstrate that energy concentration at the end-tip increases with the decreasing of frequency, end-tip diameter, and radial distance from metal wire surface. As the temperature decreases, the local field intensity increases, which may result from the higher conductivity and smaller skin depth of metal at lower temperature. Because the energy density is very sensitive to temperature, the conical metal wire tip can be used to measure the changes of temperature accurately, which may be confirmed by experiment in the future.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
    [CrossRef]
  2. M. Lee and M. C. Wanke, “Searching for a solid-state terahertz technology,” Science 316, 64-65 (2007).
    [CrossRef] [PubMed]
  3. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
    [CrossRef] [PubMed]
  4. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015-1017 (2003).
    [CrossRef]
  5. H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
    [CrossRef]
  6. J. C. Cao, A. Z. Li, X. L. Lei, and S. L. Feng, “Current self-oscillation and driving frequency dependence of negative-effective-mass diodes,” Appl. Phys. Lett. 79, 3524-3526 (2006).
    [CrossRef]
  7. J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 211115 (2006).
    [CrossRef]
  8. W. Feng and J. C. Cao, “Theoretical study of terahertz current oscillation in GaAs1−xNx,” J. Appl. Phys. 104, 013111 (2008).
    [CrossRef]
  9. J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003).
    [CrossRef] [PubMed]
  10. H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photo detector,” Appl. Phys. Lett. 84, 4068-4070 (2004).
    [CrossRef]
  11. C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004).
    [CrossRef]
  12. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449-4451 (2000).
    [CrossRef]
  13. S. P. Jamison, R. W. McGown, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987-1989 (2000).
    [CrossRef]
  14. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002).
    [CrossRef]
  15. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263-5268 (2004).
    [CrossRef] [PubMed]
  16. X. Y. He and H. X. Lu, “Investigation on propagation properties of terahertz waveguide hollow plastic fiber,” Opt. Fiber Technol. 12, 145-148 (2009).
    [CrossRef]
  17. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949-1954 (2008).
    [CrossRef]
  18. J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
    [CrossRef]
  19. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
    [CrossRef]
  20. X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009).
    [CrossRef]
  21. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  22. R. W. McGowan, G. Gallow, and D. Grischnowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431-1433 (1999).
    [CrossRef]
  23. K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
    [CrossRef] [PubMed]
  24. J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279-290 (2006).
    [CrossRef] [PubMed]
  25. N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87, 071106 (2005).
    [CrossRef]
  26. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028-7034 (2005).
    [CrossRef] [PubMed]
  27. L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
    [CrossRef]
  28. Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271-278 (2008).
    [CrossRef] [PubMed]
  29. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  30. H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16, 18241-18248 (2008).
    [CrossRef] [PubMed]
  31. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  32. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
    [CrossRef]
  33. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
    [CrossRef]
  34. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131-12144 (2007).
    [CrossRef] [PubMed]
  35. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119-1128 (1950).
    [CrossRef]
  36. X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066-2069 (2006).
    [CrossRef]
  37. M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246-254 (1962).
    [CrossRef]
  38. T.-I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  39. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815-10822 (2005).
    [CrossRef] [PubMed]
  40. N. C. J. van der Valk, “Towards terahertz microscopy,” Ph.D. dissertation (Delft University of Technology, 2005).
  41. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493-4499 (1985).
    [CrossRef] [PubMed]
  42. CRC Handbook of Chemistry and Physics, 73rd ed., D.R.Lide, ed. (CRC Press, 1992).

2009 (3)

X. Y. He and H. X. Lu, “Investigation on propagation properties of terahertz waveguide hollow plastic fiber,” Opt. Fiber Technol. 12, 145-148 (2009).
[CrossRef]

X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009).
[CrossRef]

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

2008 (6)

H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16, 18241-18248 (2008).
[CrossRef] [PubMed]

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271-278 (2008).
[CrossRef] [PubMed]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949-1954 (2008).
[CrossRef]

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

W. Feng and J. C. Cao, “Theoretical study of terahertz current oscillation in GaAs1−xNx,” J. Appl. Phys. 104, 013111 (2008).
[CrossRef]

2007 (3)

M. Lee and M. C. Wanke, “Searching for a solid-state terahertz technology,” Science 316, 64-65 (2007).
[CrossRef] [PubMed]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131-12144 (2007).
[CrossRef] [PubMed]

2006 (7)

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066-2069 (2006).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

J. C. Cao, A. Z. Li, X. L. Lei, and S. L. Feng, “Current self-oscillation and driving frequency dependence of negative-effective-mass diodes,” Appl. Phys. Lett. 79, 3524-3526 (2006).
[CrossRef]

J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 211115 (2006).
[CrossRef]

2005 (5)

J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028-7034 (2005).
[CrossRef] [PubMed]

T.-I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815-10822 (2005).
[CrossRef] [PubMed]

2004 (5)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263-5268 (2004).
[CrossRef] [PubMed]

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photo detector,” Appl. Phys. Lett. 84, 4068-4070 (2004).
[CrossRef]

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004).
[CrossRef]

2003 (2)

J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003).
[CrossRef] [PubMed]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015-1017 (2003).
[CrossRef]

2002 (3)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

2000 (2)

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

S. P. Jamison, R. W. McGown, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

1999 (1)

1985 (1)

1962 (1)

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246-254 (1962).
[CrossRef]

1950 (1)

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

Agarwal, K.

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Alexander, R. W.

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Awad, M.

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Bell, R. J.

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Callebaut, H.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015-1017 (2003).
[CrossRef]

Cao, H.

Cao, J. C.

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

W. Feng and J. C. Cao, “Theoretical study of terahertz current oscillation in GaAs1−xNx,” J. Appl. Phys. 104, 013111 (2008).
[CrossRef]

J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 211115 (2006).
[CrossRef]

J. C. Cao, A. Z. Li, X. L. Lei, and S. L. Feng, “Current self-oscillation and driving frequency dependence of negative-effective-mass diodes,” Appl. Phys. Lett. 79, 3524-3526 (2006).
[CrossRef]

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066-2069 (2006).
[CrossRef]

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photo detector,” Appl. Phys. Lett. 84, 4068-4070 (2004).
[CrossRef]

J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003).
[CrossRef] [PubMed]

Chen, X. D.

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Deibel, J. A.

Escarra, M. D.

Feng, S. L.

J. C. Cao, A. Z. Li, X. L. Lei, and S. L. Feng, “Current self-oscillation and driving frequency dependence of negative-effective-mass diodes,” Appl. Phys. Lett. 79, 3524-3526 (2006).
[CrossRef]

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066-2069 (2006).
[CrossRef]

Feng, W.

W. Feng and J. C. Cao, “Theoretical study of terahertz current oscillation in GaAs1−xNx,” J. Appl. Phys. 104, 013111 (2008).
[CrossRef]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
[CrossRef]

Gallow, G.

García-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

George, R.

Goubau, G.

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

Gramotnev, D. K.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
[CrossRef]

T.-I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

S. P. Jamison, R. W. McGown, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

Grischnowsky, D.

Guckenberger, R.

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Harrington, J. A.

He, X. Y.

X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009).
[CrossRef]

X. Y. He and H. X. Lu, “Investigation on propagation properties of terahertz waveguide hollow plastic fiber,” Opt. Fiber Technol. 12, 145-148 (2009).
[CrossRef]

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066-2069 (2006).
[CrossRef]

Hu, Q.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015-1017 (2003).
[CrossRef]

Imbriale, W.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004).
[CrossRef]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Issa, N. A.

Jamison, S. P.

S. P. Jamison, R. W. McGown, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Jamnejad, V.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004).
[CrossRef]

Jang, J. S.

Jeon, T. I.

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

T.-I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Ji, Y. B.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

King, M. J.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246-254 (1962).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Kumar, S.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015-1017 (2003).
[CrossRef]

Kurz, H.

Lee, E. S.

Lee, M.

M. Lee and M. C. Wanke, “Searching for a solid-state terahertz technology,” Science 316, 64-65 (2007).
[CrossRef] [PubMed]

Lei, X. L.

J. C. Cao, A. Z. Li, X. L. Lei, and S. L. Feng, “Current self-oscillation and driving frequency dependence of negative-effective-mass diodes,” Appl. Phys. Lett. 79, 3524-3526 (2006).
[CrossRef]

Li, A. Z.

J. C. Cao, A. Z. Li, X. L. Lei, and S. L. Feng, “Current self-oscillation and driving frequency dependence of negative-effective-mass diodes,” Appl. Phys. Lett. 79, 3524-3526 (2006).
[CrossRef]

Li, H.

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

Liang, H.

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Liu, H. C.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photo detector,” Appl. Phys. Lett. 84, 4068-4070 (2004).
[CrossRef]

Long, L. L.

Lu, H. X.

X. Y. He and H. X. Lu, “Investigation on propagation properties of terahertz waveguide hollow plastic fiber,” Opt. Fiber Technol. 12, 145-148 (2009).
[CrossRef]

Lü, J. T.

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 211115 (2006).
[CrossRef]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Manshadi, F.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004).
[CrossRef]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Matsuura, Y.

McGowan, R. W.

McGown, R. W.

S. P. Jamison, R. W. McGown, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Mendis, R.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

Mittleman, D. M.

J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Mueller, E.

Nagel, M.

Nahata, A.

Ordal, M. A.

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Pedersen, P.

Pile, D. F. P.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

Planken, P. C. M.

N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

Querry, M. R.

Reno, J. L.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015-1017 (2003).
[CrossRef]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Ruan, S.

Shen, L. F.

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Shimabukuro, F.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004).
[CrossRef]

Song, C. Y.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photo detector,” Appl. Phys. Lett. 84, 4068-4070 (2004).
[CrossRef]

SpringThorpe, A. J.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photo detector,” Appl. Phys. Lett. 84, 4068-4070 (2004).
[CrossRef]

Stanton, P.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Takeda, E.

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

van der Valk, N. C. J.

N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

N. C. J. van der Valk, “Towards terahertz microscopy,” Ph.D. dissertation (Delft University of Technology, 2005).

Vernon, K. C.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

Wächter, M.

Wang, K. L.

J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Wanke, M. C.

M. Lee and M. C. Wanke, “Searching for a solid-state terahertz technology,” Science 316, 64-65 (2007).
[CrossRef] [PubMed]

Williams, B. S.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015-1017 (2003).
[CrossRef]

Wiltse, J. C.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246-254 (1962).
[CrossRef]

Yeh, C.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004).
[CrossRef]

Zhang, J. Q.

J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
[CrossRef]

T.-I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Zhang, M.

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
[CrossRef]

Zhang, Y.

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (11)

T.-I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015-1017 (2003).
[CrossRef]

J. C. Cao, A. Z. Li, X. L. Lei, and S. L. Feng, “Current self-oscillation and driving frequency dependence of negative-effective-mass diodes,” Appl. Phys. Lett. 79, 3524-3526 (2006).
[CrossRef]

J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 211115 (2006).
[CrossRef]

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photo detector,” Appl. Phys. Lett. 84, 4068-4070 (2004).
[CrossRef]

S. P. Jamison, R. W. McGown, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

Chin. Phys. Lett. (1)

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066-2069 (2006).
[CrossRef]

IRE Trans. Antennas Propag. (1)

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246-254 (1962).
[CrossRef]

J. Appl. Phys. (5)

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

W. Feng and J. C. Cao, “Theoretical study of terahertz current oscillation in GaAs1−xNx,” J. Appl. Phys. 104, 013111 (2008).
[CrossRef]

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Nature (London) (1)

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004).
[CrossRef]

Nature Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
[CrossRef]

Opt. Express (7)

Opt. Fiber Technol. (1)

X. Y. He and H. X. Lu, “Investigation on propagation properties of terahertz waveguide hollow plastic fiber,” Opt. Fiber Technol. 12, 145-148 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Phys. Rev. Lett. (4)

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003).
[CrossRef] [PubMed]

Science (1)

M. Lee and M. C. Wanke, “Searching for a solid-state terahertz technology,” Science 316, 64-65 (2007).
[CrossRef] [PubMed]

Other (2)

N. C. J. van der Valk, “Towards terahertz microscopy,” Ph.D. dissertation (Delft University of Technology, 2005).

CRC Handbook of Chemistry and Physics, 73rd ed., D.R.Lide, ed. (CRC Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a conical metal wire waveguide. The diameter gradually decreases from a 0 to a z .

Fig. 2
Fig. 2

(a) Skin depth of several common metals in the THz region. (b) Magnetic component of THz SPP mode versus radial distance inside and outside of metal wire. The diameter of metal wire is 500 μ m , and the radiation frequency is 1.0 THz .

Fig. 3
Fig. 3

(a) Ratio of E r field component versus frequency for different conical metal wire materials. (b) Ratio of energy density versus frequency for different metal wire materials. The diameter of conical metal wire decreases from 500 μ m to 30 μ m , and the radial distance from metal wire surface is 30 μ m .

Fig. 4
Fig. 4

(a) Ratio of E r field component at the end-tip diameter to that at the beginning diameter versus end-tip diameter for Cu conical wire at different frequencies. (b) Ratio of energy density at the end-tip diameter to that at the beginning diameter contours for frequency and end-tip diameter. Beginning diameter is 500 μ m , and the radial distance from metal wire surface is 30 μ m .

Fig. 5
Fig. 5

(a) Ratio of energy density at the end-tip diameter to that at the beginning diameter contours for frequency and radial distance from a metal wire surface. Conical Cu wire decreases from 500 μ m to 30 μ m . (b) Ratio of energy density at the end-tip diameter to that at the beginning diameter contours for end-tip diameter and radial distance from metal wire surface. The radiation frequency is 0.3 THz .

Fig. 6
Fig. 6

(a) Skin depth of Cu wire versus frequency at different temperatures. (b) and (c) are the ratio of field component and energy density versus frequency for Cu conical wire at different temperatures, respectively. The diameter of Cu conical wire decreases from 500 μ m to 30 μ m ; the radial distance from metal wire surface is 30 μ m .

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E r = j A ( z ) h ( z ) γ ( z ) Z 1 ( γ ( z ) r ) e j ( ω t h ( z ) z ) ,
E z = A ( z ) Z 0 ( γ ( z ) r ) e j ( ω t h ( z ) z ) ,
H φ = j A ( z ) κ 2 ω μ γ ( z ) Z 1 ( γ ( z ) r ) e j ( ω t h ( z ) z ) ,
k m = ( ω μ c σ c ) 1 2 e j π 4 ,
k a = ω ( ɛ μ ) 1 2 ,
μ γ k a 2 H 0 ( γ a ) H 1 ( γ a ) = μ c γ m k m 2 J 0 ( γ m a ) J 1 ( γ m a ) = 0 ,
γ γ m = k k m 2 = k 2 ( 1 + j σ μ m ω ɛ μ ) j k 2 σ μ m ω ɛ μ .
γ γ m μ m μ k 2 k m 2 H 1 ( γ a ) H 0 ( γ a ) J 0 ( γ m a ) J 1 ( γ m a ) = 0.
N ρ = Re [ 2 π ρ r E r ( z ) H φ * ( z ) d r ] .
Re [ 2 π a 0 r E r ( z ) H φ * ( z ) d r ] = Re [ 2 π a z r E r ( z ) H φ * ( z ) d r ] .
E r ( z ) E r ( 0 ) a = H 1 ( 1 ) ( γ ( z ) ( a z + a ) ) H 1 ( 1 ) ( γ ( 0 ) ( a 0 + a ) ) h ( z ) h ( 0 ) { Re [ h ( 0 ) ( γ 2 ( z ) γ * 2 ( z ) ratio 1 ) ] Re [ h ( z ) ( γ 2 ( 0 ) γ * 2 ( 0 ) ratio 2 ) ] } 1 2 ,
H φ ( z ) H φ ( 0 ) a = H 1 ( 1 ) ( γ ( z ) ( a z + a ) ) H 1 ( 1 ) ( γ ( 0 ) ( a 0 + a ) ) { Re [ h ( 0 ) ( γ 2 ( z ) γ * 2 ( z ) ratio 1 ) ] Re [ h ( z ) ( γ 2 ( 0 ) γ * 2 ( 0 ) ratio 2 ) ] } 1 2 ,
ratio 1 = γ * ( 0 ) a 0 H 1 ( 1 ) ( γ ( 0 ) a 0 ) H 0 ( 1 ) ( γ ( 0 ) a 0 ) * γ ( 0 ) a 0 H 1 ( 1 ) ( γ ( 0 ) a 0 ) * H 0 ( 1 ) ( γ ( 0 ) a 0 ) ,
ratio 2 = γ * ( z ) a z H 1 ( 1 ) ( γ ( z ) a z ) H z ( 1 ) ( γ ( z ) a z ) * γ ( z ) a z H 1 ( 1 ) ( γ ( z ) a z ) * H 0 ( 1 ) ( γ ( 0 ) a 0 ) ,
W ( r ) = E 2 { d [ ω ɛ ( ω ) ] d ω } ,
ɛ ( ω ) = ( ɛ ω p 2 ω 2 + ω p 2 ) + i ω τ ω p 2 ω ( ω 2 + ω τ 2 ) ,

Metrics