Abstract

Terahertz (THz) time-domain spectroscopy is used as a noncontact method to evaluate a nondoped indium phosphide (InP) wafer for the temperature and frequency ranges of 4.2300K and 0.24THz, respectively. The strongly temperature- and frequency-dependent optical constants of the complex refractive index and complex conductivity were observed in the THz region, which were fitted and analyzed with a simple Drude model. The temperature dependence of the carrier density and scattering time are also presented. The shallow donors of impurities are discussed with the obtained results.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
    [CrossRef]
  2. T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S.-i. Nakashima, and C. L. Pan, “Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas,” Opt. Express 12, 2954-2959 (2004).
    [CrossRef] [PubMed]
  3. J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595-600 (2005).
    [CrossRef]
  4. Ioffe Physico-Technical Institute, “New semiconductor materials. Characteristics and properties,” http://www.ioffe.rssi.ru/SVA/NSM.
  5. S. Adachi, Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley-Interscience, 1992).
    [CrossRef] [PubMed]
  6. C. S. Ma, P. W. Chan, V. C. Lo, C. W. Ong, and S. P. Wong, “Deep-level photoluminescence studies of undoped and tin-doped (LEC) InP,” J. Mater. Sci.: Mater. Electron. 5, 215-220 (1994).
    [CrossRef]
  7. H. W. Dong, Y. W. Zhao, H. P. Lu, J. H. Jiao, J. Q. Zhao, and L. Y. Lin, “Photoluminescence assessment of undoped semi-insulating InP wafers obtained by annealing in iron phosphide vapour,” Semicond. Sci. Technol. 17, 570-574 (2002).
    [CrossRef]
  8. S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
    [CrossRef]
  9. H. Yoshinaga, T. Matsumori, and F. Uehara, “Impurity effect on recombination process in InP,” Jpn. J. Appl. Phys., Part 1 35, 2930-2933 (1996).
    [CrossRef]
  10. K. Zdansky, L. Pekarek, and P. Hlidek, “Pure and intentionally doped indium phosphide wafers treated by long time annealing at high temperatures,” Semicond. Sci. Technol. 18, 938-944 (2003).
    [CrossRef]
  11. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
    [CrossRef]
  12. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97-105 (2007).
    [CrossRef]
  13. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38, 409-415 (1999).
    [CrossRef]
  14. T. D. Dorney, R. G. Baraiuk, and D. M. Mittleman, “Material parameter estimation with terahertz time domain spectroscopy,” J. Opt. Soc. Am. A 18, 1562-1571 (2001).
    [CrossRef]
  15. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335-4350 (2007).
    [CrossRef] [PubMed]
  16. D. Grischkowsky, S. Keiding, M. v. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  17. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,” J. Appl. Phys. 90, 837-842 (2001).
    [CrossRef]
  18. T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106--1109 (1997).
    [CrossRef]
  19. R. T. Kinasewitz and B. Senitzky, “Investigation of the complex permittivity of n-type silicon at millimeter wavelengths,” J. Appl. Phys. 54, 3394-3398 (1983).
    [CrossRef]
  20. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, 1976).
  21. T. Ohba and S. Ikawa, “Far-infrared absorption of silicon crystals,” J. Appl. Phys. 64, 4141-4143 (1988).
    [CrossRef]
  22. E. Barta, “Determination of effective mass values by a Kramers-Kronig analysis for variously doped silicon crystals,” Infrared Phys. 17, 111-119 (1977).
    [CrossRef]
  23. M. G. Astles, F. G. H. Smith, and E. W. Williams, “Indium phosphide,” J. Electrochem. Soc. 120, 1750-1757 (1973).
    [CrossRef]
  24. A. Yamamoto, S. Shinoyama, and C. Uemura, “Silicon contamination of InP synthesized under high phosphorus pressure,” J. Electrochem. Soc. 128, 585-589 (1981).
    [CrossRef]
  25. R. Coquille, Y. Toudic, M. Gauneau, G. Grandpierre, and J. C. Paris, “Synthesis, crystal growth and characterization of InP,” J. Cryst. Growth 64, 23-31 (1983).
    [CrossRef]

2007 (2)

2005 (1)

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595-600 (2005).
[CrossRef]

2004 (1)

2003 (1)

K. Zdansky, L. Pekarek, and P. Hlidek, “Pure and intentionally doped indium phosphide wafers treated by long time annealing at high temperatures,” Semicond. Sci. Technol. 18, 938-944 (2003).
[CrossRef]

2002 (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
[CrossRef]

H. W. Dong, Y. W. Zhao, H. P. Lu, J. H. Jiao, J. Q. Zhao, and L. Y. Lin, “Photoluminescence assessment of undoped semi-insulating InP wafers obtained by annealing in iron phosphide vapour,” Semicond. Sci. Technol. 17, 570-574 (2002).
[CrossRef]

2001 (2)

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,” J. Appl. Phys. 90, 837-842 (2001).
[CrossRef]

T. D. Dorney, R. G. Baraiuk, and D. M. Mittleman, “Material parameter estimation with terahertz time domain spectroscopy,” J. Opt. Soc. Am. A 18, 1562-1571 (2001).
[CrossRef]

1999 (1)

1998 (1)

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

1997 (1)

T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106--1109 (1997).
[CrossRef]

1996 (1)

H. Yoshinaga, T. Matsumori, and F. Uehara, “Impurity effect on recombination process in InP,” Jpn. J. Appl. Phys., Part 1 35, 2930-2933 (1996).
[CrossRef]

1994 (1)

C. S. Ma, P. W. Chan, V. C. Lo, C. W. Ong, and S. P. Wong, “Deep-level photoluminescence studies of undoped and tin-doped (LEC) InP,” J. Mater. Sci.: Mater. Electron. 5, 215-220 (1994).
[CrossRef]

1990 (1)

1988 (1)

T. Ohba and S. Ikawa, “Far-infrared absorption of silicon crystals,” J. Appl. Phys. 64, 4141-4143 (1988).
[CrossRef]

1983 (3)

R. T. Kinasewitz and B. Senitzky, “Investigation of the complex permittivity of n-type silicon at millimeter wavelengths,” J. Appl. Phys. 54, 3394-3398 (1983).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
[CrossRef]

R. Coquille, Y. Toudic, M. Gauneau, G. Grandpierre, and J. C. Paris, “Synthesis, crystal growth and characterization of InP,” J. Cryst. Growth 64, 23-31 (1983).
[CrossRef]

1981 (1)

A. Yamamoto, S. Shinoyama, and C. Uemura, “Silicon contamination of InP synthesized under high phosphorus pressure,” J. Electrochem. Soc. 128, 585-589 (1981).
[CrossRef]

1977 (1)

E. Barta, “Determination of effective mass values by a Kramers-Kronig analysis for variously doped silicon crystals,” Infrared Phys. 17, 111-119 (1977).
[CrossRef]

1973 (1)

M. G. Astles, F. G. H. Smith, and E. W. Williams, “Indium phosphide,” J. Electrochem. Soc. 120, 1750-1757 (1973).
[CrossRef]

Adachi, S.

S. Adachi, Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley-Interscience, 1992).
[CrossRef] [PubMed]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, 1976).

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
[CrossRef]

Astles, M. G.

M. G. Astles, F. G. H. Smith, and E. W. Williams, “Indium phosphide,” J. Electrochem. Soc. 120, 1750-1757 (1973).
[CrossRef]

Baraiuk, R. G.

Barta, E.

E. Barta, “Determination of effective mass values by a Kramers-Kronig analysis for variously doped silicon crystals,” Infrared Phys. 17, 111-119 (1977).
[CrossRef]

Beling, C. D.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Castro-Camus, E.

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595-600 (2005).
[CrossRef]

Chan, P. W.

C. S. Ma, P. W. Chan, V. C. Lo, C. W. Ong, and S. P. Wong, “Deep-level photoluminescence studies of undoped and tin-doped (LEC) InP,” J. Mater. Sci.: Mater. Electron. 5, 215-220 (1994).
[CrossRef]

Chen, X. D.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Coquille, R.

R. Coquille, Y. Toudic, M. Gauneau, G. Grandpierre, and J. C. Paris, “Synthesis, crystal growth and characterization of InP,” J. Cryst. Growth 64, 23-31 (1983).
[CrossRef]

Coutaz, J.-L.

Dong, H. W.

H. W. Dong, Y. W. Zhao, H. P. Lu, J. H. Jiao, J. Q. Zhao, and L. Y. Lin, “Photoluminescence assessment of undoped semi-insulating InP wafers obtained by annealing in iron phosphide vapour,” Semicond. Sci. Technol. 17, 570-574 (2002).
[CrossRef]

Dorney, T. D.

Duvillaret, L.

Exter, M. v.

Fattinger, C.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
[CrossRef]

Fung, S.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Garet, F.

Gauneau, M.

R. Coquille, Y. Toudic, M. Gauneau, G. Grandpierre, and J. C. Paris, “Synthesis, crystal growth and characterization of InP,” J. Cryst. Growth 64, 23-31 (1983).
[CrossRef]

Gong, M.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Grandpierre, G.

R. Coquille, Y. Toudic, M. Gauneau, G. Grandpierre, and J. C. Paris, “Synthesis, crystal growth and characterization of InP,” J. Cryst. Growth 64, 23-31 (1983).
[CrossRef]

Grischkowsky, D.

Hangyo, M.

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S.-i. Nakashima, and C. L. Pan, “Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas,” Opt. Express 12, 2954-2959 (2004).
[CrossRef] [PubMed]

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,” J. Appl. Phys. 90, 837-842 (2001).
[CrossRef]

Hlidek, P.

K. Zdansky, L. Pekarek, and P. Hlidek, “Pure and intentionally doped indium phosphide wafers treated by long time annealing at high temperatures,” Semicond. Sci. Technol. 18, 938-944 (2003).
[CrossRef]

Ikawa, S.

T. Ohba and S. Ikawa, “Far-infrared absorption of silicon crystals,” J. Appl. Phys. 64, 4141-4143 (1988).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106--1109 (1997).
[CrossRef]

Jiao, J. H.

H. W. Dong, Y. W. Zhao, H. P. Lu, J. H. Jiao, J. Q. Zhao, and L. Y. Lin, “Photoluminescence assessment of undoped semi-insulating InP wafers obtained by annealing in iron phosphide vapour,” Semicond. Sci. Technol. 17, 570-574 (2002).
[CrossRef]

Johnston, M. B.

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595-600 (2005).
[CrossRef]

Keiding, S.

Kinasewitz, R. T.

R. T. Kinasewitz and B. Senitzky, “Investigation of the complex permittivity of n-type silicon at millimeter wavelengths,” J. Appl. Phys. 54, 3394-3398 (1983).
[CrossRef]

Koch, M.

Lin, L. Y.

H. W. Dong, Y. W. Zhao, H. P. Lu, J. H. Jiao, J. Q. Zhao, and L. Y. Lin, “Photoluminescence assessment of undoped semi-insulating InP wafers obtained by annealing in iron phosphide vapour,” Semicond. Sci. Technol. 17, 570-574 (2002).
[CrossRef]

Liu, S. L.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Liu, T.-A.

Liu, X. L.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Lloyd-Hughes, J.

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595-600 (2005).
[CrossRef]

Lo, V. C.

C. S. Ma, P. W. Chan, V. C. Lo, C. W. Ong, and S. P. Wong, “Deep-level photoluminescence studies of undoped and tin-doped (LEC) InP,” J. Mater. Sci.: Mater. Electron. 5, 215-220 (1994).
[CrossRef]

Lu, H. P.

H. W. Dong, Y. W. Zhao, H. P. Lu, J. H. Jiao, J. Q. Zhao, and L. Y. Lin, “Photoluminescence assessment of undoped semi-insulating InP wafers obtained by annealing in iron phosphide vapour,” Semicond. Sci. Technol. 17, 570-574 (2002).
[CrossRef]

Ma, C. S.

C. S. Ma, P. W. Chan, V. C. Lo, C. W. Ong, and S. P. Wong, “Deep-level photoluminescence studies of undoped and tin-doped (LEC) InP,” J. Mater. Sci.: Mater. Electron. 5, 215-220 (1994).
[CrossRef]

Matsumori, T.

H. Yoshinaga, T. Matsumori, and F. Uehara, “Impurity effect on recombination process in InP,” Jpn. J. Appl. Phys., Part 1 35, 2930-2933 (1996).
[CrossRef]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, 1976).

Mittleman, D. M.

Morikawa, O.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,” J. Appl. Phys. 90, 837-842 (2001).
[CrossRef]

Nakajima, M.

Nakashima, S.-i.

Nashima, S.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,” J. Appl. Phys. 90, 837-842 (2001).
[CrossRef]

Ohba, T.

T. Ohba and S. Ikawa, “Far-infrared absorption of silicon crystals,” J. Appl. Phys. 64, 4141-4143 (1988).
[CrossRef]

Ong, C. W.

C. S. Ma, P. W. Chan, V. C. Lo, C. W. Ong, and S. P. Wong, “Deep-level photoluminescence studies of undoped and tin-doped (LEC) InP,” J. Mater. Sci.: Mater. Electron. 5, 215-220 (1994).
[CrossRef]

Pan, C. L.

Paris, J. C.

R. Coquille, Y. Toudic, M. Gauneau, G. Grandpierre, and J. C. Paris, “Synthesis, crystal growth and characterization of InP,” J. Cryst. Growth 64, 23-31 (1983).
[CrossRef]

Pekarek, L.

K. Zdansky, L. Pekarek, and P. Hlidek, “Pure and intentionally doped indium phosphide wafers treated by long time annealing at high temperatures,” Semicond. Sci. Technol. 18, 938-944 (2003).
[CrossRef]

Pupeza, I.

Qian, J. J.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Sakai, K.

Senitzky, B.

R. T. Kinasewitz and B. Senitzky, “Investigation of the complex permittivity of n-type silicon at millimeter wavelengths,” J. Appl. Phys. 54, 3394-3398 (1983).
[CrossRef]

Shinoyama, S.

A. Yamamoto, S. Shinoyama, and C. Uemura, “Silicon contamination of InP synthesized under high phosphorus pressure,” J. Electrochem. Soc. 128, 585-589 (1981).
[CrossRef]

Smith, F. G. H.

M. G. Astles, F. G. H. Smith, and E. W. Williams, “Indium phosphide,” J. Electrochem. Soc. 120, 1750-1757 (1973).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
[CrossRef]

Sun, M. F.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Sun, N. F.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Sun, T. N.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Takata, K.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,” J. Appl. Phys. 90, 837-842 (2001).
[CrossRef]

Tani, M.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97-105 (2007).
[CrossRef]

Toudic, Y.

R. Coquille, Y. Toudic, M. Gauneau, G. Grandpierre, and J. C. Paris, “Synthesis, crystal growth and characterization of InP,” J. Cryst. Growth 64, 23-31 (1983).
[CrossRef]

Uehara, F.

H. Yoshinaga, T. Matsumori, and F. Uehara, “Impurity effect on recombination process in InP,” Jpn. J. Appl. Phys., Part 1 35, 2930-2933 (1996).
[CrossRef]

Uemura, C.

A. Yamamoto, S. Shinoyama, and C. Uemura, “Silicon contamination of InP synthesized under high phosphorus pressure,” J. Electrochem. Soc. 128, 585-589 (1981).
[CrossRef]

Wilk, R.

Williams, E. W.

M. G. Astles, F. G. H. Smith, and E. W. Williams, “Indium phosphide,” J. Electrochem. Soc. 120, 1750-1757 (1973).
[CrossRef]

Wong, S. P.

C. S. Ma, P. W. Chan, V. C. Lo, C. W. Ong, and S. P. Wong, “Deep-level photoluminescence studies of undoped and tin-doped (LEC) InP,” J. Mater. Sci.: Mater. Electron. 5, 215-220 (1994).
[CrossRef]

Xu, X. L.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Yamamoto, A.

A. Yamamoto, S. Shinoyama, and C. Uemura, “Silicon contamination of InP synthesized under high phosphorus pressure,” J. Electrochem. Soc. 128, 585-589 (1981).
[CrossRef]

Yang, G. Y.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Yoshinaga, H.

H. Yoshinaga, T. Matsumori, and F. Uehara, “Impurity effect on recombination process in InP,” Jpn. J. Appl. Phys., Part 1 35, 2930-2933 (1996).
[CrossRef]

Zdansky, K.

K. Zdansky, L. Pekarek, and P. Hlidek, “Pure and intentionally doped indium phosphide wafers treated by long time annealing at high temperatures,” Semicond. Sci. Technol. 18, 938-944 (2003).
[CrossRef]

Zhang, R. G.

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
[CrossRef]

Zhao, J. Q.

H. W. Dong, Y. W. Zhao, H. P. Lu, J. H. Jiao, J. Q. Zhao, and L. Y. Lin, “Photoluminescence assessment of undoped semi-insulating InP wafers obtained by annealing in iron phosphide vapour,” Semicond. Sci. Technol. 17, 570-574 (2002).
[CrossRef]

Zhao, Y. W.

H. W. Dong, Y. W. Zhao, H. P. Lu, J. H. Jiao, J. Q. Zhao, and L. Y. Lin, “Photoluminescence assessment of undoped semi-insulating InP wafers obtained by annealing in iron phosphide vapour,” Semicond. Sci. Technol. 17, 570-574 (2002).
[CrossRef]

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Fung, Y. W. Zhao, C. D. Beling, X. L. Xu, M. Gong, N. F. Sun, T. N. Sun, X. D. Chen, R. G. Zhang, S. L. Liu, G. Y. Yang, J. J. Qian, M. F. Sun, and X. L. Liu, “Compensation ratio-dependent concentration of a VInH4 complex in n-type liquid encapsulated Czochralski InP,” Appl. Phys. Lett. 73, 1275-1277 (1998).
[CrossRef]

Infrared Phys. (1)

E. Barta, “Determination of effective mass values by a Kramers-Kronig analysis for variously doped silicon crystals,” Infrared Phys. 17, 111-119 (1977).
[CrossRef]

J. Appl. Phys. (3)

R. T. Kinasewitz and B. Senitzky, “Investigation of the complex permittivity of n-type silicon at millimeter wavelengths,” J. Appl. Phys. 54, 3394-3398 (1983).
[CrossRef]

T. Ohba and S. Ikawa, “Far-infrared absorption of silicon crystals,” J. Appl. Phys. 64, 4141-4143 (1988).
[CrossRef]

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,” J. Appl. Phys. 90, 837-842 (2001).
[CrossRef]

J. Cryst. Growth (1)

R. Coquille, Y. Toudic, M. Gauneau, G. Grandpierre, and J. C. Paris, “Synthesis, crystal growth and characterization of InP,” J. Cryst. Growth 64, 23-31 (1983).
[CrossRef]

J. Electrochem. Soc. (2)

M. G. Astles, F. G. H. Smith, and E. W. Williams, “Indium phosphide,” J. Electrochem. Soc. 120, 1750-1757 (1973).
[CrossRef]

A. Yamamoto, S. Shinoyama, and C. Uemura, “Silicon contamination of InP synthesized under high phosphorus pressure,” J. Electrochem. Soc. 128, 585-589 (1981).
[CrossRef]

J. Mater. Sci.: Mater. Electron. (1)

C. S. Ma, P. W. Chan, V. C. Lo, C. W. Ong, and S. P. Wong, “Deep-level photoluminescence studies of undoped and tin-doped (LEC) InP,” J. Mater. Sci.: Mater. Electron. 5, 215-220 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 1 (1)

H. Yoshinaga, T. Matsumori, and F. Uehara, “Impurity effect on recombination process in InP,” Jpn. J. Appl. Phys., Part 1 35, 2930-2933 (1996).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97-105 (2007).
[CrossRef]

Nature Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
[CrossRef]

Phys. Rev. Lett. (1)

T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106--1109 (1997).
[CrossRef]

Semicond. Sci. Technol. (2)

K. Zdansky, L. Pekarek, and P. Hlidek, “Pure and intentionally doped indium phosphide wafers treated by long time annealing at high temperatures,” Semicond. Sci. Technol. 18, 938-944 (2003).
[CrossRef]

H. W. Dong, Y. W. Zhao, H. P. Lu, J. H. Jiao, J. Q. Zhao, and L. Y. Lin, “Photoluminescence assessment of undoped semi-insulating InP wafers obtained by annealing in iron phosphide vapour,” Semicond. Sci. Technol. 17, 570-574 (2002).
[CrossRef]

Solid State Commun. (1)

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595-600 (2005).
[CrossRef]

Other (3)

Ioffe Physico-Technical Institute, “New semiconductor materials. Characteristics and properties,” http://www.ioffe.rssi.ru/SVA/NSM.

S. Adachi, Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley-Interscience, 1992).
[CrossRef] [PubMed]

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of THz-TDS system with He Dewar.

Fig. 2
Fig. 2

Temperature dependence of (a) temporal-domain pulse, (b) amplitude in the frequency domain.

Fig. 3
Fig. 3

Temperature dependence of (a) complex refractive index and (b) absorption coefficient.

Fig. 4
Fig. 4

Temperature dependence of complex conductivity.

Fig. 5
Fig. 5

Temperature dependence of DC conductivity.

Fig. 6
Fig. 6

Experimental (symbols) and fitted (curves) complex conductivity at 180 K (red) and 300 K (blue). Open squares and triangles are the real part, and filled symbols are the corresponding imaginary part of the complex conductivity.

Fig. 7
Fig. 7

Experimental temperature-dependent (a) average collision time, or mobility, and (b) carrier density.

Fig. 8
Fig. 8

Temperature dependence of absorbance below 80 K . The dotted curve is a rough fit to the data at 4.2 K . The two Gaussian functions are estimated at center frequencies of 1.34 and 1.52 THz .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H ̃ ( ω ) = 4 n ̃ ( ω ) [ n ̃ ( ω ) + 1 ] 2 exp [ j ( n ̃ ( ω ) 1 ) ω d c ] { 1 + k = 1 m [ n ̃ ( ω ) 1 n ̃ ( ω ) + 1 exp ( j n ̃ ( ω ) ω d c ) ] 2 k } ,
n new ( ω ) = n old ( ω ) + ξ p E R ( ω ) ,
κ new ( ω ) = κ old ( ω ) + ξ m E R ( ω ) .
m E R ( ω ) = H ( ω ) H ̃ ( ω ) ,
p E R ( ω ) = H ( ω ) H ̃ ( ω ) .
ε ̃ ( ω ) = n ̃ 2 ( ω ) = ε j σ ̃ ( ω ) ω ε 0 ,
σ ̃ ( ω ) = σ dc j Γ ω j Γ ,
μ ( ω ) = e m * ε ε 1 ( ω ) ω ε 2 ( ω ) ,
N ( ω ) = m * ω e 2 τ ε 0 ε 2 ( ω ) ( 1 + ω 2 τ 2 ) .

Metrics