Abstract

The absorption and thermal exitance of two-dimensional (2D) metallic and metallodielectric photonic crystals (PCs) is simulated with rigorous scattering matrix methods. These PCs have strong thermal exitance and absorption peaks in the normal direction that shift to larger and smaller wavelengths as the angle varies away from the normal direction. These PCs redistribute the thermal emission at different wavelengths into different emission angles. There is partial suppression of photon emission at long wavelengths and enhancement at the shorter wavelength spectral range where the thermal exitance has a maximum. Surface plasmon models describe well the angular dependent absorption. Thermophotovoltaic devices utilizing PCs need to account for the strong spectral variation of the thermal exitance with angle.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
    [CrossRef] [PubMed]
  2. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
    [CrossRef]
  3. I. El-Kady, W. W. Chow, and J. Fleming, “Emission from an active photonic crystal,” Phys. Rev. B 72, 195110 (2005).
    [CrossRef]
  4. R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
    [CrossRef]
  5. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
    [CrossRef]
  6. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399-3401 (2004).
    [CrossRef]
  7. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional Tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
    [CrossRef]
  8. M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
    [CrossRef]
  9. J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications,” Nature 417, 52-55 (2002).
    [CrossRef] [PubMed]
  10. R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
    [CrossRef]
  11. J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
    [CrossRef]
  12. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave based transfer matrix method,” Phys. Rev. E 67, 046607 (2003).
    [CrossRef]
  13. R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission in sub-wavelength hole arrays,” J. Opt. Soc. Am. B 24, 2489-2596 (2007).
    [CrossRef]
  14. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
    [CrossRef] [PubMed]
  15. M. Florescu, K. Busch, and J. P. Dowling, “Thermal radiation in photonic crystals,” Phys. Rev. B 75, 201101 (2007).
    [CrossRef]
  16. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  17. H. Raether, Surface Plasmons, Vol. 111, of Springer Tracts in Modern Physics (Springer-Verlag, 1988).
  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
    [CrossRef]
  19. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  20. J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  21. Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
    [CrossRef]

2008 (2)

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional Tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[CrossRef]

2007 (3)

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
[CrossRef]

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission in sub-wavelength hole arrays,” J. Opt. Soc. Am. B 24, 2489-2596 (2007).
[CrossRef]

M. Florescu, K. Busch, and J. P. Dowling, “Thermal radiation in photonic crystals,” Phys. Rev. B 75, 201101 (2007).
[CrossRef]

2006 (2)

J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

2005 (2)

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

I. El-Kady, W. W. Chow, and J. Fleming, “Emission from an active photonic crystal,” Phys. Rev. B 72, 195110 (2005).
[CrossRef]

2004 (3)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef] [PubMed]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399-3401 (2004).
[CrossRef]

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

2003 (4)

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave based transfer matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

2002 (2)

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

2001 (1)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Biswas, R.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[CrossRef]

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission in sub-wavelength hole arrays,” J. Opt. Soc. Am. B 24, 2489-2596 (2007).
[CrossRef]

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Busch, K.

M. Florescu, K. Busch, and J. P. Dowling, “Thermal radiation in photonic crystals,” Phys. Rev. B 75, 201101 (2007).
[CrossRef]

Celanovic, I.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional Tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

Chen, G.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef] [PubMed]

Chow, W. W.

I. El-Kady, W. W. Chow, and J. Fleming, “Emission from an active photonic crystal,” Phys. Rev. B 72, 195110 (2005).
[CrossRef]

Constant, K.

J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Daly, J.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Ding, C. G.

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission in sub-wavelength hole arrays,” J. Opt. Soc. Am. B 24, 2489-2596 (2007).
[CrossRef]

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

Dowling, J. P.

M. Florescu, K. Busch, and J. P. Dowling, “Thermal radiation in photonic crystals,” Phys. Rev. B 75, 201101 (2007).
[CrossRef]

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

El-Kady, I.

I. El-Kady, W. W. Chow, and J. Fleming, “Emission from an active photonic crystal,” Phys. Rev. B 72, 195110 (2005).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Fleming, J.

I. El-Kady, W. W. Chow, and J. Fleming, “Emission from an active photonic crystal,” Phys. Rev. B 72, 195110 (2005).
[CrossRef]

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

Florescu, L.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
[CrossRef]

Florescu, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
[CrossRef]

M. Florescu, K. Busch, and J. P. Dowling, “Thermal radiation in photonic crystals,” Phys. Rev. B 75, 201101 (2007).
[CrossRef]

Garcia-Vidal, F. J.

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Greenwald, A.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

Ho, K. M.

J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Joannopoulos, J. D.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef] [PubMed]

Johnson, E.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[CrossRef]

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission in sub-wavelength hole arrays,” J. Opt. Soc. Am. B 24, 2489-2596 (2007).
[CrossRef]

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional Tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional Tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

Kim, C. H.

J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Kim, Y.-S.

J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Lee, H.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
[CrossRef]

Lee, J. H.

J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Li, Z. Y.

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave based transfer matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lin, L. L.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave based transfer matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lin, S.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef] [PubMed]

Martin-Moreno, L.

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

McNeal, M.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Narayanaswamy, A.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef] [PubMed]

Neginhal, S.

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission in sub-wavelength hole arrays,” J. Opt. Soc. Am. B 24, 2489-2596 (2007).
[CrossRef]

Oh, C. H.

J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pendry, J.

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pralle, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
[CrossRef]

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

Puscasu, I.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[CrossRef]

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
[CrossRef]

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission in sub-wavelength hole arrays,” J. Opt. Soc. Am. B 24, 2489-2596 (2007).
[CrossRef]

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons, Vol. 111, of Springer Tracts in Modern Physics (Springer-Verlag, 1988).

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399-3401 (2004).
[CrossRef]

Taylor, A.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[CrossRef]

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Ting, D. Z.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Yugami, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399-3401 (2004).
[CrossRef]

Zhao, W.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[CrossRef]

Zhou, D.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399-3401 (2004).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional Tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[CrossRef]

J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006).
[CrossRef]

J. Appl. Phys. (2)

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission in sub-wavelength hole arrays,” J. Opt. Soc. Am. B 24, 2489-2596 (2007).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (3)

M. Florescu, K. Busch, and J. P. Dowling, “Thermal radiation in photonic crystals,” Phys. Rev. B 75, 201101 (2007).
[CrossRef]

I. El-Kady, W. W. Chow, and J. Fleming, “Emission from an active photonic crystal,” Phys. Rev. B 72, 195110 (2005).
[CrossRef]

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006).
[CrossRef]

Phys. Rev. E (1)

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave based transfer matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Science (2)

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons, Vol. 111, of Springer Tracts in Modern Physics (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scanning electron microscope images of the metallic PC with triangular lattice.

Fig. 2
Fig. 2

Real components of the dielectric function for Pt, Au, and Ag in the infrared wavelength range.

Fig. 3
Fig. 3

(a) Absorption as a function of wavelength for a Pt metallic PC with triangular lattice symmetry. The incident radiation is in the normal direction. Shown for comparison is a simulation for an Au metallic PC with the same parameters as Pt metallic PC. (b) Absorption of the Pt metallic PC with different depths of holes. (c) The incident radiation is at 30° to the normal, the azimuthal angle is 0°. (d) The incident radiation is at 30° to the normal, the azimuthal angle is 30°.

Fig. 4
Fig. 4

Position of main absorption peaks in metallic PC (Pt) with respect to the azimuthal angle for both polarizations when the incident angle is 30°.

Fig. 5
Fig. 5

(a) Spectral absorption as a function of wavelength for different angles of incidence for the metallic PC with triangular lattice symmetry. The shading corresponds to the magnitude of absorption. The spectral absorption is averaged over s, p polarization and ϕ = 0 ° , 30°. (b) Spectral exitance for different angles of incidence for the metallic PC with triangular lattice symmetry. The temperature is 590 K . The shading corresponds to the magnitude of exitance. (c) Normal exitance of both metallic and metallodielectric PC compared to that of black body at 590 K . (d) Integrated exitance over the emission angles (0°–70°) of the metallic PC at 590 K versus the black body exitance at the same temperature. The exitance of a gray body at 590 K with average emissivity of metallic PC is also calculated.

Fig. 6
Fig. 6

Absorption of the metallic PC with holes radius of R = 0.25 a and R = 0.35 a .

Fig. 7
Fig. 7

Absorption as a function of wavelength, for both 2D metallodielectric and 2D metallic PC, with triangular lattice symmetry. The incident radiation is in the normal direction.

Fig. 8
Fig. 8

(a) Spectral absorption as a function of wavelength for different angles of incidence for the metallodielectric PC with triangular lattice symmetry. The shading corresponds to the magnitude of absorption. The spectral absorption is averaged over s, p polarization and ϕ = 0 ° , 30°. The experiment results are included. (b) Integrated exitance of the metallodielectric PC at 590 K over the incidence angle (0°–70°) versus the exitance of the blackbody at the same temperature. The exitance of a gray body at 590 K with average emissivity of metallodielectric PC is calculated.

Fig. 9
Fig. 9

(a) Field distribution in x z plane of the metallic PC ( α = 3.74 μ m ) with normal incidence shown for two neighboring holes. The resonance wavelength is 3.55 μ m . Also shown in (b), (c), (d) are three-dimensional views of the field distribution just below the surface of one hole. (b) The incidence is in the normal direction. The wavelength is 3.65 μ m . (c) The incident angle is 30° and the azimuthal angle is 0°. The wavelength is at resonance wavelength of 4.9 μ m . (d) The incident angle is 30° and the azimuthal angle is 0°. The wavelength ( 4.5 μ m ) is at not at resonance.

Fig. 10
Fig. 10

Field distribution in the x y plane just below surface of one hole in the metallodielectric PC ( α = 4.2 μ m ) with normal incidence. (a) The wavelength is 3.90 μ m . (b) The wavelength is 4.25 μ m .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

M ( λ , T , θ ) = A ( λ , θ ) M BB ( λ , T ) .
M BB ( λ , T ) = 2 π h c 2 λ 5 [ e h c λ k T 1 ] .
A avg ( λ ) = A ( λ , θ = 0 ° ) ( 1 cos 5 ° ) + θ = 10 ° θ = 70 ° ( A ( λ , θ ) sin θ cos θ ) ( 1 cos 5 ° ) + θ = 10 ° θ = 70 ° ( sin θ cos θ ) .
G 1 = 2 π a ( 1 , 1 3 ) ; G 2 = 2 π a ( 0 , 2 3 ) .
k sp = ω c [ ε 1 ε 2 ε 1 + ε 2 ] 1 2 .
ω c sin θ i + G = k sp .
[ ε 1 ε 2 ε 1 + ε 2 ] = [ sin θ cos ϕ ± i ν 0 ν ] 2 + [ sin θ sin ϕ i 1 3 v 0 ν ± j 2 3 v 0 ν ] 2 ,
γ = 1 l d = 2 ( k nr R ) 2 ( 2 π λ ) 2 ,

Metrics