Abstract

Optical near-field interactions exhibit a hierarchical response, which is one of the most unique attributes of light–matter interactions occurring locally on the nanometer scale. It allows hierarchical nano-optical systems that break through the integration restrictions posed by the diffraction limit of conventional propagating light and offers multiple hierarchical functionalities at different physical scales in the subwavelength regime. Here we demonstrate an information theoretical approach to such nano-optical systems while assessing their electromagnetic and logical aspects via angular-spectrum analysis. Mutual information at each level of the hierarchy reveals quantitatively the relation between the physical effects associated with the hierarchy in the optical near-fields, as well as possible environmental disturbances affecting the system locally or globally, and the system’s capabilities for information processing and communication.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, 2008).
    [CrossRef]
  2. Near Field Optics, D.W.Pohl and D.Courjon, eds. (Kluwer Academic, 1993).
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
    [CrossRef]
  4. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
    [CrossRef] [PubMed]
  5. A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 133118 (2008).
    [CrossRef]
  6. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
    [CrossRef] [PubMed]
  7. T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007).
    [CrossRef]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
    [CrossRef]
  9. M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).
    [CrossRef]
  10. M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
    [CrossRef]
  11. M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
    [CrossRef] [PubMed]
  12. M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
    [CrossRef]
  13. N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17, 11113-11121 (2009).
    [CrossRef] [PubMed]
  14. C. Cohen-Tannoudji, I. Dupont-Roc, and G. Grynberg, Photons and Atoms (Wiley, 1989).
  15. H. Ishihara and K. Cho, “Nonlocal theory of the third-order nonlinear optical response of confined excitons,” Phys. Rev. B 48, 7960-7974 (1993).
    [CrossRef]
  16. M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: application of dressed photons to novel photonic devices and systems,” IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
    [CrossRef]
  17. T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M.Ohtsu, ed. (Springer Verlag, 2005), 127-199.
    [CrossRef]
  18. W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004).
    [CrossRef]
  19. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  20. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
    [CrossRef]
  21. K. Matsuda and T. Saiki, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87, 043112 (2005).
    [CrossRef]
  22. E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71, 035347 (2005).
    [CrossRef]
  23. C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 379-423 (1948);C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 623-656 (1948).
  24. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027-1030 (2001).
    [CrossRef] [PubMed]
  25. M. A. Neifeld and M. Lee, “Information theoretic framework for the analysis of a slow-light delay device,” J. Opt. Soc. Am. B 25, C31-C38 (2008).
    [CrossRef]
  26. P. Oittinen and H. Saarelma, “Average mutual information as a quality measure in imaging processes,” J. Opt. Soc. Am. A 3, 897-901 (1986).
    [CrossRef]
  27. D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24, A1-A18 (2007).
    [CrossRef]
  28. A. W. Eckford, “Achievable information rates for molecular communication with distinct molecules,” in Bio-Inspired Models of Network, Information and Computing Systems 2007 (IEEE, 2007), pp. 313-315.
    [CrossRef]
  29. R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
    [CrossRef] [PubMed]
  30. M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46, 6095-6103 (2007).
    [CrossRef]
  31. M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008).
    [CrossRef]
  32. E. Wolf and M. Nieto-Vesperinas, “Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences,” J. Opt. Soc. Am. A 2, 886-889 (1985).
    [CrossRef]
  33. M. Naruse, T. Yatsui, J. H. Kim, and M. Ohtsu, “Hierarchy in optical near-fields by nano-scale shape engineering and its application to traceable memory,” Appl. Phys. Express 1, 062004 1-3 (2008).
    [CrossRef]
  34. K. Kitamura, T. Yatsui, M. Ohtsu, and G.-C. Yi, “Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method,” Nanotechnology 19, 175305 (2008).
    [CrossRef] [PubMed]
  35. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).
    [CrossRef]
  36. Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, “Optical selection rule and oscillator strength of confined exciton system in CuCl thin films,” Phys. Rev. Lett. 71, 1431-1434 (1993).
    [CrossRef] [PubMed]
  37. T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Near-field optical chemical vapor deposition using Zn(acac)2 with a non-adiabatic photochemical process,” Appl. Phys. B 84, 247-251 (2006).
    [CrossRef]
  38. M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, and M. Ohtsu, “Analysis of surface roughness of optical elements planarized by nonadiabatic optical near-field etching,” J. Appl. Phys. 105, 063516 (2009).
    [CrossRef]

2009 (2)

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17, 11113-11121 (2009).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, and M. Ohtsu, “Analysis of surface roughness of optical elements planarized by nonadiabatic optical near-field etching,” J. Appl. Phys. 105, 063516 (2009).
[CrossRef]

2008 (9)

M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008).
[CrossRef]

M. Naruse, T. Yatsui, J. H. Kim, and M. Ohtsu, “Hierarchy in optical near-fields by nano-scale shape engineering and its application to traceable memory,” Appl. Phys. Express 1, 062004 1-3 (2008).
[CrossRef]

K. Kitamura, T. Yatsui, M. Ohtsu, and G.-C. Yi, “Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method,” Nanotechnology 19, 175305 (2008).
[CrossRef] [PubMed]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: application of dressed photons to novel photonic devices and systems,” IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

M. A. Neifeld and M. Lee, “Information theoretic framework for the analysis of a slow-light delay device,” J. Opt. Soc. Am. B 25, C31-C38 (2008).
[CrossRef]

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 133118 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
[CrossRef]

2007 (4)

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007).
[CrossRef]

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46, 6095-6103 (2007).
[CrossRef]

D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24, A1-A18 (2007).
[CrossRef]

2006 (3)

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Near-field optical chemical vapor deposition using Zn(acac)2 with a non-adiabatic photochemical process,” Appl. Phys. B 84, 247-251 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

2005 (5)

K. Matsuda and T. Saiki, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87, 043112 (2005).
[CrossRef]

E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71, 035347 (2005).
[CrossRef]

M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

2004 (1)

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004).
[CrossRef]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

2001 (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027-1030 (2001).
[CrossRef] [PubMed]

2000 (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

1993 (2)

H. Ishihara and K. Cho, “Nonlocal theory of the third-order nonlinear optical response of confined excitons,” Phys. Rev. B 48, 7960-7974 (1993).
[CrossRef]

Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, “Optical selection rule and oscillator strength of confined exciton system in CuCl thin films,” Phys. Rev. Lett. 71, 1431-1434 (1993).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

1948 (1)

C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 379-423 (1948);C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 623-656 (1948).

C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 379-423 (1948);C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 623-656 (1948).

Akagi, F.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007).
[CrossRef]

Akahane, K.

M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008).
[CrossRef]

Akao, Y.

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
[CrossRef]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Benjamin, K.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Brent, R.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Cho, K.

H. Ishihara and K. Cho, “Nonlocal theory of the third-order nonlinear optical response of confined excitons,” Phys. Rev. B 48, 7960-7974 (1993).
[CrossRef]

Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, “Optical selection rule and oscillator strength of confined exciton system in CuCl thin films,” Phys. Rev. Lett. 71, 1431-1434 (1993).
[CrossRef] [PubMed]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, I. Dupont-Roc, and G. Grynberg, Photons and Atoms (Wiley, 1989).

Colman-Lerner, A.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Cover, T. M.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).
[CrossRef]

Dupont-Roc, I.

C. Cohen-Tannoudji, I. Dupont-Roc, and G. Grynberg, Photons and Atoms (Wiley, 1989).

Eckford, A. W.

A. W. Eckford, “Achievable information rates for molecular communication with distinct molecules,” in Bio-Inspired Models of Network, Information and Computing Systems 2007 (IEEE, 2007), pp. 313-315.
[CrossRef]

Eisler, H.-J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Fedutik, Y.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Gordon, A.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Grynberg, G.

C. Cohen-Tannoudji, I. Dupont-Roc, and G. Grynberg, Photons and Atoms (Wiley, 1989).

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Hieda, H.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007).
[CrossRef]

Hirata, K.

M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, and M. Ohtsu, “Analysis of surface roughness of optical elements planarized by nonadiabatic optical near-field etching,” J. Appl. Phys. 105, 063516 (2009).
[CrossRef]

Hirose, N.

Holl, M.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Hori, H.

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46, 6095-6103 (2007).
[CrossRef]

T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M.Ohtsu, ed. (Springer Verlag, 2005), 127-199.
[CrossRef]

Hussein, M. L.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004).
[CrossRef]

Inoue, T.

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46, 6095-6103 (2007).
[CrossRef]

T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M.Ohtsu, ed. (Springer Verlag, 2005), 127-199.
[CrossRef]

Ishihara, H.

H. Ishihara and K. Cho, “Nonlocal theory of the third-order nonlinear optical response of confined excitons,” Phys. Rev. B 48, 7960-7974 (1993).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

Johnson, M. B.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004).
[CrossRef]

Kanemitsu, Y.

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 133118 (2008).
[CrossRef]

Kawazoe, T.

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17, 11113-11121 (2009).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: application of dressed photons to novel photonic devices and systems,” IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008).
[CrossRef]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Near-field optical chemical vapor deposition using Zn(acac)2 with a non-adiabatic photochemical process,” Appl. Phys. B 84, 247-251 (2006).
[CrossRef]

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, 2008).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Kikitsu, A.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007).
[CrossRef]

Kim, J. H.

M. Naruse, T. Yatsui, J. H. Kim, and M. Ohtsu, “Hierarchy in optical near-fields by nano-scale shape engineering and its application to traceable memory,” Appl. Phys. Express 1, 062004 1-3 (2008).
[CrossRef]

Kitamura, K.

K. Kitamura, T. Yatsui, M. Ohtsu, and G.-C. Yi, “Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method,” Nanotechnology 19, 175305 (2008).
[CrossRef] [PubMed]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Kobayashi, K.

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Near-field optical chemical vapor deposition using Zn(acac)2 with a non-adiabatic photochemical process,” Appl. Phys. B 84, 247-251 (2006).
[CrossRef]

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, 2008).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Kubota, F.

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Lee, M.

Lienau, C.

E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71, 035347 (2005).
[CrossRef]

Lok, L.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
[CrossRef]

Ma, W. Q.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Matsuda, K.

K. Matsuda and T. Saiki, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87, 043112 (2005).
[CrossRef]

Matsumoto, T.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Miller, D. A. B.

Mishima, T. D.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004).
[CrossRef]

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027-1030 (2001).
[CrossRef] [PubMed]

Miyazaki, T.

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

Mukai, A.

M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Naito, K.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007).
[CrossRef]

Naruse, M.

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17, 11113-11121 (2009).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, and M. Ohtsu, “Analysis of surface roughness of optical elements planarized by nonadiabatic optical near-field etching,” J. Appl. Phys. 105, 063516 (2009).
[CrossRef]

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: application of dressed photons to novel photonic devices and systems,” IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008).
[CrossRef]

M. Naruse, T. Yatsui, J. H. Kim, and M. Ohtsu, “Hierarchy in optical near-fields by nano-scale shape engineering and its application to traceable memory,” Appl. Phys. Express 1, 062004 1-3 (2008).
[CrossRef]

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46, 6095-6103 (2007).
[CrossRef]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, 2008).
[CrossRef]

Naya, M.

M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Neifeld, M. A.

Nieto-Vesperinas, M.

Nishibayashi, K.

M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008).
[CrossRef]

Nishida, T.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007).
[CrossRef]

Nomura, W.

Ohtsu, M.

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17, 11113-11121 (2009).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, and M. Ohtsu, “Analysis of surface roughness of optical elements planarized by nonadiabatic optical near-field etching,” J. Appl. Phys. 105, 063516 (2009).
[CrossRef]

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008).
[CrossRef]

M. Naruse, T. Yatsui, J. H. Kim, and M. Ohtsu, “Hierarchy in optical near-fields by nano-scale shape engineering and its application to traceable memory,” Appl. Phys. Express 1, 062004 1-3 (2008).
[CrossRef]

K. Kitamura, T. Yatsui, M. Ohtsu, and G.-C. Yi, “Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method,” Nanotechnology 19, 175305 (2008).
[CrossRef] [PubMed]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: application of dressed photons to novel photonic devices and systems,” IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Near-field optical chemical vapor deposition using Zn(acac)2 with a non-adiabatic photochemical process,” Appl. Phys. B 84, 247-251 (2006).
[CrossRef]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, 2008).
[CrossRef]

Oittinen, P.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Pesce, C. G.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Pincus, D.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Runge, E.

E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71, 035347 (2005).
[CrossRef]

Saarelma, H.

Saiki, T.

K. Matsuda and T. Saiki, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87, 043112 (2005).
[CrossRef]

Sakaguchi, S.

M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Salamo, G. J.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004).
[CrossRef]

Sangu, S.

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

Schöps, O.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Segawa, Y.

Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, “Optical selection rule and oscillator strength of confined exciton system in CuCl thin films,” Phys. Rev. Lett. 71, 1431-1434 (1993).
[CrossRef] [PubMed]

Serra, E.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
[CrossRef]

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 379-423 (1948);C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 623-656 (1948).

C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 379-423 (1948);C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 623-656 (1948).

Shultz, J. L.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004).
[CrossRef]

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027-1030 (2001).
[CrossRef] [PubMed]

Sugiyama, H.

Tabata, Y.

M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, and M. Ohtsu, “Analysis of surface roughness of optical elements planarized by nonadiabatic optical near-field etching,” J. Appl. Phys. 105, 063516 (2009).
[CrossRef]

Tang, Z. K.

Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, “Optical selection rule and oscillator strength of confined exciton system in CuCl thin films,” Phys. Rev. Lett. 71, 1431-1434 (1993).
[CrossRef] [PubMed]

Tani, T.

M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Tate, N.

Tayagaki, T.

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 133118 (2008).
[CrossRef]

Temnov, V. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Thomas, J. A.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).
[CrossRef]

Tsurusawa, I.

M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Ueda, A.

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 133118 (2008).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
[CrossRef]

Woggon, U.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Wolf, E.

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Xu, X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

Yamamoto, N.

M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008).
[CrossRef]

Yanase, A.

Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, “Optical selection rule and oscillator strength of confined exciton system in CuCl thin films,” Phys. Rev. Lett. 71, 1431-1434 (1993).
[CrossRef] [PubMed]

Yasui, T.

Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, “Optical selection rule and oscillator strength of confined exciton system in CuCl thin films,” Phys. Rev. Lett. 71, 1431-1434 (1993).
[CrossRef] [PubMed]

Yasutani, S.

M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Yatsui, T.

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17, 11113-11121 (2009).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, and M. Ohtsu, “Analysis of surface roughness of optical elements planarized by nonadiabatic optical near-field etching,” J. Appl. Phys. 105, 063516 (2009).
[CrossRef]

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

K. Kitamura, T. Yatsui, M. Ohtsu, and G.-C. Yi, “Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method,” Nanotechnology 19, 175305 (2008).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, J. H. Kim, and M. Ohtsu, “Hierarchy in optical near-fields by nano-scale shape engineering and its application to traceable memory,” Appl. Phys. Express 1, 062004 1-3 (2008).
[CrossRef]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: application of dressed photons to novel photonic devices and systems,” IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, 2008).
[CrossRef]

Yi, G.-C.

K. Kitamura, T. Yatsui, M. Ohtsu, and G.-C. Yi, “Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method,” Nanotechnology 19, 175305 (2008).
[CrossRef] [PubMed]

Yu, R. C.

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
[CrossRef]

Appl. Phys. B (1)

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Near-field optical chemical vapor deposition using Zn(acac)2 with a non-adiabatic photochemical process,” Appl. Phys. B 84, 247-251 (2006).
[CrossRef]

Appl. Phys. Express (2)

M. Naruse, T. Yatsui, J. H. Kim, and M. Ohtsu, “Hierarchy in optical near-fields by nano-scale shape engineering and its application to traceable memory,” Appl. Phys. Express 1, 062004 1-3 (2008).
[CrossRef]

M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

K. Matsuda and T. Saiki, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87, 043112 (2005).
[CrossRef]

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 133118 (2008).
[CrossRef]

M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 379-423 (1948);C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 623-656 (1948).

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: application of dressed photons to novel photonic devices and systems,” IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

IEICE Trans. Electron. (1)

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

J. Appl. Phys. (1)

M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, and M. Ohtsu, “Analysis of surface roughness of optical elements planarized by nonadiabatic optical near-field etching,” J. Appl. Phys. 105, 063516 (2009).
[CrossRef]

J. Nanophotonics (1)

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46, 6095-6103 (2007).
[CrossRef]

Nanotechnology (1)

K. Kitamura, T. Yatsui, M. Ohtsu, and G.-C. Yi, “Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method,” Nanotechnology 19, 175305 (2008).
[CrossRef] [PubMed]

Nature (2)

R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008).
[CrossRef] [PubMed]

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027-1030 (2001).
[CrossRef] [PubMed]

Nature Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (3)

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004).
[CrossRef]

E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71, 035347 (2005).
[CrossRef]

H. Ishihara and K. Cho, “Nonlocal theory of the third-order nonlinear optical response of confined excitons,” Phys. Rev. B 48, 7960-7974 (1993).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, “Optical selection rule and oscillator strength of confined exciton system in CuCl thin films,” Phys. Rev. Lett. 71, 1431-1434 (1993).
[CrossRef] [PubMed]

Science (2)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Other (6)

T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M.Ohtsu, ed. (Springer Verlag, 2005), 127-199.
[CrossRef]

C. Cohen-Tannoudji, I. Dupont-Roc, and G. Grynberg, Photons and Atoms (Wiley, 1989).

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, 2008).
[CrossRef]

Near Field Optics, D.W.Pohl and D.Courjon, eds. (Kluwer Academic, 1993).

A. W. Eckford, “Achievable information rates for molecular communication with distinct molecules,” in Bio-Inspired Models of Network, Information and Computing Systems 2007 (IEEE, 2007), pp. 313-315.
[CrossRef]

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Hierarchy in optical near-fields at the subwavelength scale and its application to information and communications. (a) Optical near-field interactions and their scale-dependence. (b) Hierarchical nano-optical system where different functionalities are associated with each of the physical scales involved. (c) System diagram to study information theoretic aspects of hierarchical nano-optical systems.

Fig. 2
Fig. 2

Angular spectrum analysis of a hierarchical nano-optical system. (a) Physical model for a hierarchical nano-optical system consisted of four oscillating dipoles ( d ( 1 ) , d ( 2 ) , d ( 3 ) , d ( 4 ) ) . The optical response at the first layer ( F ( 1 ) and F ( 2 ) ) and the second layer ( S ) are evaluated. (b) Angular spectrum evaluated at the first layer (dashed curve) and the second layer (solid curve) from an array of dipoles whose phase arrangement is specified in (a), which indicates that the optical near-fields are localized in the second layer, whereas they are not localized in the first layer.

Fig. 3
Fig. 3

Dependence structure between the dipole pairs and the logical levels in the first and second layers. (a) Relation between dipole pairs and the logical level in each layer. (b) List of the total of eight bit-sequences, or symbols, and their corresponding dipole arrangements.

Fig. 4
Fig. 4

Hierarchical electromagnetic structures at the subwavelength scale. (a,b) Simulated electric field intensity distributions corresponding to the input symbols (a) a 4 and (b) a 3 . (c) Simulated electric field intensity obtained at the second layer for all of the symbols that yield the intended digit for the second layer by digitizing the intensity with a threshold indicated by the dashed line.

Fig. 5
Fig. 5

Dependence of the hierarchical electromagnetic structure to various nano-scale entities. (a) Array of dipoles, corresponding to the symbol a 6 , each of which has identical radiation intensity (denoted by Array 6) and those which have biased radiation intensity while the total intensity remains the same (denoted by Array 6 ). (b) Angular spectrum evaluated at the second layer for Array 6 and Array 6 , where the Array 6 exhibits degraded light localization. Simulated electric field intensity distributions corresponding to (c) Array 6 and (d) Array 6 .

Fig. 6
Fig. 6

Near-field disturbances to the system. (a) Model of an environmental disturbance that locally affects each of the dipoles. The phase of dipole d ( i ) can be flipped with probability p i . (b) The relation between the input symbols a i and the output ones b j . The red and green arrows, respectively, correspond to the phase flips at the edge and at the center dipole(s). The blue ones correspond to no error.

Fig. 7
Fig. 7

Scale-dependent mutual information. (a) Mutual information I ( A ; B ) as a function of error probabilities p E and p C . (b) Mutual information for the left-hand bit at the first layer ( I F ( 1 ) ( A ; B ) ) and that for the second layer ( I S ( A ; B ) ) are evaluated as a function of error probability p C , while keeping the total error rate p E + p C constant.

Fig. 8
Fig. 8

Far-field disturbance and its impact on layer-dependent mutual information. (a–c) Model of an environmental disturbance that couples to the system when arranged in a dipole manner and that does not couple to it when in a quadrupole arrangement. (a) Two closely separated dipole pairs can be flipped when they have the same phase. (b) Four dipoles can be flipped when they have the same phase. (c) The dipole pair does not suffer disturbances when they have opposite phases. (d) The relation between the input symbols a i and the output ones b j with those disturbances. The red (diagonal) arrows correspond to errors due to disturbances. The blue (horizontal) ones correspond to no error. (e) Mutual information for the left-hand bit at the first layer ( I F ( 1 ) ( A ; B ) ) and that for the second layer ( I S ( A ; B ) ) as a function of error probability. I F ( 1 ) ( A ; B ) takes the value of 1, meaning that the first-layer information is completely resistant to such environmental disturbances.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E z ( R ) = ( i K 3 4 π ε 0 ) 1 d s s s z f z ( s , d ( 1 ) , , d ( N ) ) ,
f z ( s , d ( 1 ) , , d ( N ) ) = k = 1 N d ( k ) s s 2 1 cos ( φ ( k ) ϕ ( k ) ) J 1 ( K r ( k ) s ) exp ( K z ( k ) s 2 1 ) ,
( P ( b 0 ) P ( b 7 ) ) = T ( P ( a 0 ) P ( a 7 ) ) ,
I ( A ; B ) = i = 0 N 1 j = 0 N 1 P ( a i , b j ) log 2 P ( a i , b j ) P ( a i ) P ( b j ) ,
P ( f i ( 1 ) ) = a j F i ( 1 ) P ( a j ) .
P ( f i ( 1 ) , g j ( 1 ) ) = a s F i ( 1 ) b t G j ( 1 ) P ( b t | a s ) P ( a s ) ,
I F ( 1 ) ( A ; B ) = i = 0 1 j = 0 1 P ( f i ( 1 ) , g j ( 1 ) ) log 2 P ( f i ( 1 ) , g j ( 1 ) ) P ( f i ( 1 ) ) P ( g j ( 1 ) ) .
I S ( A ; B ) = i = 0 1 j = 0 1 P ( s i , t j ) log 2 P ( s i , t j ) P ( s i ) P ( t j ) .

Metrics