Abstract

Using the coupled-mode and carrier rate equations, we have derived a dynamic model for the distributed feedback semiconductor optical amplifier (DFB-SOA) all-optical flip-flop (AOFF). We have analyzed the effects of the coupling coefficient and the corrugation position on the dynamic response of the device. We have also investigated the effects of cross-phase modulation on the switching speed of the DFB-SOA with the distributed coupling coefficient (DCC), known as the DCC-DFB-SOA AOFF. Furthermore, it is shown that by optimizing the coupling coefficient value and the corrugation position, the AOFF speed limitation is improved significantly. The ON and OFF switching time values, in an optimized condition, are 300 and 100 ps, respectively, while the carrier lifetime is about 780 ps. In comparison with those of a conventional DFB-SOA-AOFF, these values show reductions of more than 2 and 14 times in the ON and the OFF switching times, respectively. Under such conditions, a maximum bit rate of 1.4 GHz is achieved. The finite difference time-domain method is utilized for the numerical simulations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” IEEE J. Lightwave Technol. 24, 4468-4492 (2006).
    [CrossRef]
  2. M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron Express. 3, 368-372 (2006).
    [CrossRef]
  3. D. Maywar, G. P. Agrawal, and Y. Nakano, “Robust optical control of an optical-amplifier-based flip-flop,” Opt. Express 6, 75-80 (2000).
    [CrossRef] [PubMed]
  4. W. D'Oosterlinck, F. Ohman, J. Buron, S. Sales, and A. Pérez Pardo, “All-optical flip-flop operation using a SOA and DFB laser diode optical feedback combination,” Opt. Express 15, 6190-6199 (2007).
    [CrossRef] [PubMed]
  5. W. D'Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19, 489-491 (2007).
    [CrossRef]
  6. W. D'Oosterlinck, G. Morthier, R. Baets, and T. Erneux, “Optical bistability in a traveling-wave SOA connected to a DFB laser diode: theory and experiment,” IEEE J. Quantum Electron. 42, 739-746 (2006).
    [CrossRef]
  7. K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on single distributed feedback laser diode,” Opt. Express 16, 11405-11410 (2008).
    [CrossRef] [PubMed]
  8. Y. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, “Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA,” IEEE Photon. Technol. Lett. 16, 398-400 (2004).
    [CrossRef]
  9. A. Aleshams, M. K. Moravvej-Farshi, and M. H. Sheikhi, “Tapered grating effects on static properties of a bistable QWS-DFB semiconductor laser amplifier,” Solid-State Electron. 52, 156-163 (2008).
    [CrossRef]
  10. M. Aleshams, M. K. Moravvej-Farshi, and M. H. Shikhi, “Switching behavior of bistable DFB semiconductor laser amplifiers,” Fiber Integr. Opt. 28, 275-287 (2009).
    [CrossRef]
  11. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
    [CrossRef]
  12. M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of a chirped DFB-SOA all-optical flip-flop injected with an assist light at transparency,” IEEE J. Lightwave Technol. 27, 2199-2207 (2009).
    [CrossRef]
  13. D. N. Maywar and G. P. Agrawal, “Transfer-matrix analysis of optical bistability in DFB semiconductor laser amplifiers with nonuniform gratings,” IEEE J. Quantum Electron. 33, 2029-2037 (1997).
    [CrossRef]
  14. D. Maywar, G. P. Agrawal, and Y. Nakano, “All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 18, 1003-1013 (2001).
    [CrossRef]
  15. J. Park, X. Li, and W. P. Huang, “Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,” IEEE J. Quantum Electron. 39, 1415-1423 (2003).
    [CrossRef]
  16. H. Ghafouri-Shiraz, Distributed Feedback Laser Diode and Optical Tunable Filter (Wiley, 2003).
    [CrossRef]
  17. J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers, 3rd ed. (IEE, 1998).
    [CrossRef]

2009 (2)

M. Aleshams, M. K. Moravvej-Farshi, and M. H. Shikhi, “Switching behavior of bistable DFB semiconductor laser amplifiers,” Fiber Integr. Opt. 28, 275-287 (2009).
[CrossRef]

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of a chirped DFB-SOA all-optical flip-flop injected with an assist light at transparency,” IEEE J. Lightwave Technol. 27, 2199-2207 (2009).
[CrossRef]

2008 (2)

A. Aleshams, M. K. Moravvej-Farshi, and M. H. Sheikhi, “Tapered grating effects on static properties of a bistable QWS-DFB semiconductor laser amplifier,” Solid-State Electron. 52, 156-163 (2008).
[CrossRef]

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on single distributed feedback laser diode,” Opt. Express 16, 11405-11410 (2008).
[CrossRef] [PubMed]

2007 (2)

W. D'Oosterlinck, F. Ohman, J. Buron, S. Sales, and A. Pérez Pardo, “All-optical flip-flop operation using a SOA and DFB laser diode optical feedback combination,” Opt. Express 15, 6190-6199 (2007).
[CrossRef] [PubMed]

W. D'Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

2006 (4)

W. D'Oosterlinck, G. Morthier, R. Baets, and T. Erneux, “Optical bistability in a traveling-wave SOA connected to a DFB laser diode: theory and experiment,” IEEE J. Quantum Electron. 42, 739-746 (2006).
[CrossRef]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” IEEE J. Lightwave Technol. 24, 4468-4492 (2006).
[CrossRef]

M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron Express. 3, 368-372 (2006).
[CrossRef]

2004 (1)

Y. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, “Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA,” IEEE Photon. Technol. Lett. 16, 398-400 (2004).
[CrossRef]

2003 (1)

J. Park, X. Li, and W. P. Huang, “Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,” IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

2001 (1)

2000 (1)

1997 (1)

D. N. Maywar and G. P. Agrawal, “Transfer-matrix analysis of optical bistability in DFB semiconductor laser amplifiers with nonuniform gratings,” IEEE J. Quantum Electron. 33, 2029-2037 (1997).
[CrossRef]

Agrawal, G. P.

Aleshams, A.

A. Aleshams, M. K. Moravvej-Farshi, and M. H. Sheikhi, “Tapered grating effects on static properties of a bistable QWS-DFB semiconductor laser amplifier,” Solid-State Electron. 52, 156-163 (2008).
[CrossRef]

Aleshams, M.

M. Aleshams, M. K. Moravvej-Farshi, and M. H. Shikhi, “Switching behavior of bistable DFB semiconductor laser amplifiers,” Fiber Integr. Opt. 28, 275-287 (2009).
[CrossRef]

Baets, R.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on single distributed feedback laser diode,” Opt. Express 16, 11405-11410 (2008).
[CrossRef] [PubMed]

W. D'Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

W. D'Oosterlinck, G. Morthier, R. Baets, and T. Erneux, “Optical bistability in a traveling-wave SOA connected to a DFB laser diode: theory and experiment,” IEEE J. Quantum Electron. 42, 739-746 (2006).
[CrossRef]

Bhardwaj, A.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Buron, J.

W. D'Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

W. D'Oosterlinck, F. Ohman, J. Buron, S. Sales, and A. Pérez Pardo, “All-optical flip-flop operation using a SOA and DFB laser diode optical feedback combination,” Opt. Express 15, 6190-6199 (2007).
[CrossRef] [PubMed]

Cabot, S.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Carroll, J.

J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers, 3rd ed. (IEE, 1998).
[CrossRef]

D'Oosterlinck, W.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on single distributed feedback laser diode,” Opt. Express 16, 11405-11410 (2008).
[CrossRef] [PubMed]

W. D'Oosterlinck, F. Ohman, J. Buron, S. Sales, and A. Pérez Pardo, “All-optical flip-flop operation using a SOA and DFB laser diode optical feedback combination,” Opt. Express 15, 6190-6199 (2007).
[CrossRef] [PubMed]

W. D'Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

W. D'Oosterlinck, G. Morthier, R. Baets, and T. Erneux, “Optical bistability in a traveling-wave SOA connected to a DFB laser diode: theory and experiment,” IEEE J. Quantum Electron. 42, 739-746 (2006).
[CrossRef]

Erneux, T.

W. D'Oosterlinck, G. Morthier, R. Baets, and T. Erneux, “Optical bistability in a traveling-wave SOA connected to a DFB laser diode: theory and experiment,” IEEE J. Quantum Electron. 42, 739-746 (2006).
[CrossRef]

Ghafouri-Shiraz, H.

H. Ghafouri-Shiraz, Distributed Feedback Laser Diode and Optical Tunable Filter (Wiley, 2003).
[CrossRef]

Ghayour, R.

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of a chirped DFB-SOA all-optical flip-flop injected with an assist light at transparency,” IEEE J. Lightwave Technol. 27, 2199-2207 (2009).
[CrossRef]

Huang, W. P.

J. Park, X. Li, and W. P. Huang, “Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,” IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

Huybrechts, K.

Jabbari, M.

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of a chirped DFB-SOA all-optical flip-flop injected with an assist light at transparency,” IEEE J. Lightwave Technol. 27, 2199-2207 (2009).
[CrossRef]

Jaques, J.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Kang, I.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Kim, J. H.

Y. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, “Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA,” IEEE Photon. Technol. Lett. 16, 398-400 (2004).
[CrossRef]

Kim, S. H.

Y. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, “Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA,” IEEE Photon. Technol. Lett. 16, 398-400 (2004).
[CrossRef]

Kim, Y.

Y. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, “Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA,” IEEE Photon. Technol. Lett. 16, 398-400 (2004).
[CrossRef]

Lee, S.

Y. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, “Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA,” IEEE Photon. Technol. Lett. 16, 398-400 (2004).
[CrossRef]

Li, X.

J. Park, X. Li, and W. P. Huang, “Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,” IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

Maywar, D.

Maywar, D. N.

D. N. Maywar and G. P. Agrawal, “Transfer-matrix analysis of optical bistability in DFB semiconductor laser amplifiers with nonuniform gratings,” IEEE J. Quantum Electron. 33, 2029-2037 (1997).
[CrossRef]

Moravvej-Farshi, M. K.

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of a chirped DFB-SOA all-optical flip-flop injected with an assist light at transparency,” IEEE J. Lightwave Technol. 27, 2199-2207 (2009).
[CrossRef]

M. Aleshams, M. K. Moravvej-Farshi, and M. H. Shikhi, “Switching behavior of bistable DFB semiconductor laser amplifiers,” Fiber Integr. Opt. 28, 275-287 (2009).
[CrossRef]

A. Aleshams, M. K. Moravvej-Farshi, and M. H. Sheikhi, “Tapered grating effects on static properties of a bistable QWS-DFB semiconductor laser amplifier,” Solid-State Electron. 52, 156-163 (2008).
[CrossRef]

Morthier, G.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on single distributed feedback laser diode,” Opt. Express 16, 11405-11410 (2008).
[CrossRef] [PubMed]

W. D'Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

W. D'Oosterlinck, G. Morthier, R. Baets, and T. Erneux, “Optical bistability in a traveling-wave SOA connected to a DFB laser diode: theory and experiment,” IEEE J. Quantum Electron. 42, 739-746 (2006).
[CrossRef]

Nakano, Y.

Neilson, D. T.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Ohman, F.

Öhman, F.

W. D'Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

Park, J.

J. Park, X. Li, and W. P. Huang, “Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,” IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

Pérez Pardo, A.

Plumb, D.

J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers, 3rd ed. (IEE, 1998).
[CrossRef]

Sales, S.

Sauer, N.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Sheikhi, M. H.

A. Aleshams, M. K. Moravvej-Farshi, and M. H. Sheikhi, “Tapered grating effects on static properties of a bistable QWS-DFB semiconductor laser amplifier,” Solid-State Electron. 52, 156-163 (2008).
[CrossRef]

Shikhi, M. H.

M. Aleshams, M. K. Moravvej-Farshi, and M. H. Shikhi, “Switching behavior of bistable DFB semiconductor laser amplifiers,” Fiber Integr. Opt. 28, 275-287 (2009).
[CrossRef]

Takeda, K.

M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron Express. 3, 368-372 (2006).
[CrossRef]

Takenaka, M.

M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron Express. 3, 368-372 (2006).
[CrossRef]

Whiteaway, J.

J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers, 3rd ed. (IEE, 1998).
[CrossRef]

Woo, D. H.

Y. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, “Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA,” IEEE Photon. Technol. Lett. 16, 398-400 (2004).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” IEEE J. Lightwave Technol. 24, 4468-4492 (2006).
[CrossRef]

Yoon, T. H.

Y. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, “Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA,” IEEE Photon. Technol. Lett. 16, 398-400 (2004).
[CrossRef]

Zarifkar, A.

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of a chirped DFB-SOA all-optical flip-flop injected with an assist light at transparency,” IEEE J. Lightwave Technol. 27, 2199-2207 (2009).
[CrossRef]

Zhang, L.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Fiber Integr. Opt. (1)

M. Aleshams, M. K. Moravvej-Farshi, and M. H. Shikhi, “Switching behavior of bistable DFB semiconductor laser amplifiers,” Fiber Integr. Opt. 28, 275-287 (2009).
[CrossRef]

IEEE J. Lightwave Technol. (2)

M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of a chirped DFB-SOA all-optical flip-flop injected with an assist light at transparency,” IEEE J. Lightwave Technol. 27, 2199-2207 (2009).
[CrossRef]

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” IEEE J. Lightwave Technol. 24, 4468-4492 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. N. Maywar and G. P. Agrawal, “Transfer-matrix analysis of optical bistability in DFB semiconductor laser amplifiers with nonuniform gratings,” IEEE J. Quantum Electron. 33, 2029-2037 (1997).
[CrossRef]

W. D'Oosterlinck, G. Morthier, R. Baets, and T. Erneux, “Optical bistability in a traveling-wave SOA connected to a DFB laser diode: theory and experiment,” IEEE J. Quantum Electron. 42, 739-746 (2006).
[CrossRef]

J. Park, X. Li, and W. P. Huang, “Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,” IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

W. D'Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Y. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, “Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA,” IEEE Photon. Technol. Lett. 16, 398-400 (2004).
[CrossRef]

IEICE Electron Express. (1)

M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron Express. 3, 368-372 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Solid-State Electron. (1)

A. Aleshams, M. K. Moravvej-Farshi, and M. H. Sheikhi, “Tapered grating effects on static properties of a bistable QWS-DFB semiconductor laser amplifier,” Solid-State Electron. 52, 156-163 (2008).
[CrossRef]

Other (2)

H. Ghafouri-Shiraz, Distributed Feedback Laser Diode and Optical Tunable Filter (Wiley, 2003).
[CrossRef]

J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers, 3rd ed. (IEE, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a DCC-DFB-SOA.

Fig. 2
Fig. 2

Transmittivity versus input signal wavelength for (a) different coupling ratios with r L = 0.47 and (b) different corrugation positions with r κ = 0.33 .

Fig. 3
Fig. 3

Transmittivity versus input signal wavelength for different bias current values and r κ = 0.33 and r L = 0.47 .

Fig. 4
Fig. 4

(a) Bias current and (b) Bragg resonance shifting versus r L for different coupling ratios.

Fig. 5
Fig. 5

Output power versus the input power for (a) different input signal wavelengths and (b) different bias currents.

Fig. 6
Fig. 6

Dynamic response of an all-optical DCC-DFB-SOA flip-flop based on XPM for λ h = 1546   nm , r κ = 0.33 , r L = 0.47 , and I = 61.4   mA . The output (solid curve) is scaled on the left axis and the input (dashed curve) on the right axis. The energies of the set and the reset pulses with the same FWHM = 1   ns are E s e t = 380   fJ and E r e s e t = 14.68   pJ , respectively.

Fig. 7
Fig. 7

(a) Rise time versus set pulse energy and (b) fall time versus reset pulse energy for different coupling ratios r κ . r L is 0.47 and the bias currents are adjusted to give a 20 dB gain.

Fig. 8
Fig. 8

(a) Rise time versus set pulse energy and (b) fall time versus reset pulse energy for different r L ’s. r κ is 0.33 and the bias currents are adjusted to give a 20 dB gain.

Fig. 9
Fig. 9

Dynamic response of all-optical DCC-DFB-SOA flip-flop based on XPM for λ h = 1546   nm . The output (solid curve) is scaled on the left axis and the input (dashed curve) on the right axis. The energies of the set and the reset pulses with the same FWHM = 90   ps are E s e t = 450   fJ and E r e s e t = 14.89   pJ , respectively.

Tables (2)

Tables Icon

Table 1 Geometrical and Physical Parameters Used in the Device Simulation

Tables Icon

Table 2 Comparison of ON and OFF Switching Times We Have Obtained from the DCC-DFB-SOA with r κ = 0.33 and r L = 0.47 with Those Obtained from Different FF Structures Presented by Others

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

1 v g F ( z , t ) t + F ( z , t ) z = { j δ + 1 2 [ Γ g ( z , t ) α s ] } F ( z , t ) + j κ ( z ) R ( z , t ) ,
1 v g R ( z , t ) t R ( z , t ) z = { j δ + 1 2 [ Γ g ( z , t ) α s ] } R ( z , t ) + j κ ( z ) F ( z , t ) ,
κ a v = κ 1 r L + κ 2 ( 1 r L ) ,
κ 1 = r κ κ a v 1 + ( r κ 1 ) r L .
g m , k [ N ( z , t ) , λ k ] = a 1 [ N ( z , t ) N 0 ] a 2 ( λ k λ N ) 2 + a 3 ( λ k λ N ) 3 ,
N ( z , t ) t = J q d N ( z , t ) τ c Γ σ W d k ( g m , k ( z , t ) | P k ( z , t ) | 2 ω k ) ,
τ c = { A n r a d + B r a d N ( z , t ) + C A u g N 2 ( z , t ) } 1 ,
τ e f f ( z , t ) = τ c 1 + Γ τ c σ W d k ( | P k ( z , t ) | 2 ω k d g m , k ( z , t ) d N ( z , t ) g m , k ( z , t ) Δ L + 1 g m , k ( z , t ) Δ L ) .
1 v g P k ( z , t ) t + P k ( z , t ) z = Γ g m , k ( z , t ) P k ( z , t ) .

Metrics