Abstract

The temperature dependence of refractive indices of optical materials is characterized in this work by what we call their normalized thermo-optic coefficients. These are determined experimentally through interferometric measurements of thermal expansion and of changes in optical thickness at a few laser wavelengths as function of temperature. A suitable vectorial formalism applied to these data allows predicting the thermal evolution of the refractive index all over the useful range of transparency. The validity and reliability of our methodology is demonstrated through temperature tuning of a mid-IR HgGa2S4 optical parametric oscillator (OPO) pumped at 1.0642μm by a Nd:YAG laser. Measured thermal variation of both signal and idler wavelengths agrees very well with the predicted one.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Vannoni and G. Molesini, “Ray tracing approach to refractive index measurement of prism samples in a vacuum cell,” Proc. SPIE 7102, 71020V1-71020V7 (2008).
  2. D. B. Leviton and B. J. Frey, “Cryogenic high accuracy refraction measuring system--(CHARMS): a new facility for cryogenic infrared through far ultra-violet refractive index measurements,” Proc. SPIE 5494, 492-504 (2004).
    [CrossRef]
  3. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, J. Henningsen, A. Yelisseiev, L. Lobanov, O. Balachninaite, G. Slekys, and V. Siruptaikis, “Optical, vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981-2007 (2004).
  4. J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826-834 (1993).
    [CrossRef]
  5. J. Mangin, S. Fossier, P. Strimer, and G. Gadret, “Simultaneous determination of thermo- and electro-optic coefficients by Fabry-Pérot thermal scanning interferometry,” Proc. SPIE 5252, 423-430 (2004).
    [CrossRef]
  6. J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W1-71020W9 (2008).
  7. M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
  8. W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, Ch. 33 (McGraw-Hill, 1995).
  9. J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients; application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002-1006 (2005).
    [CrossRef]
  10. V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
    [CrossRef]
  11. S. Das, U. Chatterjee, C. Ghosh, and S. Gangopadhyay, “A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals,” Infrared Phys. Technol. 51, 9-12 (2007).
    [CrossRef]
  12. S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
    [CrossRef]
  13. S. A. Andrev, N. P. Andreeva, V. V. Badikov, I. N. Matveev, and S. M. Pshenichnikov, “Frequency up-conversion in a mercury thiogallate crystal,” Sov. J. Quantum Electron. 10, 1157-1158 (1980).
    [CrossRef]
  14. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtoscond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177-183 (2000).
    [CrossRef]
  15. V. Petrov, F. Rotermund, and F. Noack, “Generation of high power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3, R1-R19 (2001).
    [CrossRef]
  16. E. Takaoka and K. Kato, “Tunable generation in HgGa2S4,” in Conference on Lasers and Electro-Optics (CLEO'98), Technical Digest (IEEE, 1998), p. 253.
  17. F. Rotermund and V. Petrov, “Mercury thiogallate mid-infrared femtosecond optical parametric generator pumped at 1.25 μm by a Cr:forsterite regenerative amplifier,” Opt. Lett. 25, 746-748 (2000).
    [CrossRef]
  18. V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
    [CrossRef]
  19. A. Hadni, Essentials of Modern Physics Applied to the Study of the Infrared (Pergamon Press, 1967).
  20. H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Chem. Phys. 5, 329-530 (1976).
  21. V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002).
    [CrossRef]
  22. M. Kurz, A. Pusztai, and G. Müller, “Development of a new powerful computer code CrysVUn especially designed for fast simulation of bulk crystal growth processes,” J. Cryst. Growth 198/199, 101-106 (1999).
    [CrossRef]
  23. V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
    [CrossRef]
  24. S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
    [CrossRef]
  25. S. Emanueli and A. Arie, “Temperature dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661-6665 (2003).
    [CrossRef] [PubMed]
  26. K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (CLEO/QELS'2008), OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA11.
    [PubMed]

2008 (2)

M. Vannoni and G. Molesini, “Ray tracing approach to refractive index measurement of prism samples in a vacuum cell,” Proc. SPIE 7102, 71020V1-71020V7 (2008).

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W1-71020W9 (2008).

2007 (2)

S. Das, U. Chatterjee, C. Ghosh, and S. Gangopadhyay, “A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals,” Infrared Phys. Technol. 51, 9-12 (2007).
[CrossRef]

V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
[CrossRef]

2006 (2)

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
[CrossRef]

2005 (1)

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients; application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002-1006 (2005).
[CrossRef]

2004 (4)

D. B. Leviton and B. J. Frey, “Cryogenic high accuracy refraction measuring system--(CHARMS): a new facility for cryogenic infrared through far ultra-violet refractive index measurements,” Proc. SPIE 5494, 492-504 (2004).
[CrossRef]

S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, J. Henningsen, A. Yelisseiev, L. Lobanov, O. Balachninaite, G. Slekys, and V. Siruptaikis, “Optical, vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981-2007 (2004).

J. Mangin, S. Fossier, P. Strimer, and G. Gadret, “Simultaneous determination of thermo- and electro-optic coefficients by Fabry-Pérot thermal scanning interferometry,” Proc. SPIE 5252, 423-430 (2004).
[CrossRef]

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

2003 (1)

2002 (1)

V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002).
[CrossRef]

2001 (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3, R1-R19 (2001).
[CrossRef]

2000 (2)

F. Rotermund and V. Petrov, “Mercury thiogallate mid-infrared femtosecond optical parametric generator pumped at 1.25 μm by a Cr:forsterite regenerative amplifier,” Opt. Lett. 25, 746-748 (2000).
[CrossRef]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtoscond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177-183 (2000).
[CrossRef]

1999 (1)

M. Kurz, A. Pusztai, and G. Müller, “Development of a new powerful computer code CrysVUn especially designed for fast simulation of bulk crystal growth processes,” J. Cryst. Growth 198/199, 101-106 (1999).
[CrossRef]

1993 (1)

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826-834 (1993).
[CrossRef]

1980 (1)

S. A. Andrev, N. P. Andreeva, V. V. Badikov, I. N. Matveev, and S. M. Pshenichnikov, “Frequency up-conversion in a mercury thiogallate crystal,” Sov. J. Quantum Electron. 10, 1157-1158 (1980).
[CrossRef]

1979 (1)

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

1976 (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Chem. Phys. 5, 329-530 (1976).

Andreev, Yu. M.

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
[CrossRef]

Andreeva, N. P.

S. A. Andrev, N. P. Andreeva, V. V. Badikov, I. N. Matveev, and S. M. Pshenichnikov, “Frequency up-conversion in a mercury thiogallate crystal,” Sov. J. Quantum Electron. 10, 1157-1158 (1980).
[CrossRef]

Andrev, S. A.

S. A. Andrev, N. P. Andreeva, V. V. Badikov, I. N. Matveev, and S. M. Pshenichnikov, “Frequency up-conversion in a mercury thiogallate crystal,” Sov. J. Quantum Electron. 10, 1157-1158 (1980).
[CrossRef]

Anedda, A.

V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002).
[CrossRef]

Arie, A.

Badikov, V. V.

V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
[CrossRef]

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

S. A. Andrev, N. P. Andreeva, V. V. Badikov, I. N. Matveev, and S. M. Pshenichnikov, “Frequency up-conversion in a mercury thiogallate crystal,” Sov. J. Quantum Electron. 10, 1157-1158 (1980).
[CrossRef]

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Balachninaite, O.

Bidault, O.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

Chatterjee, U.

S. Das, U. Chatterjee, C. Ghosh, and S. Gangopadhyay, “A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals,” Infrared Phys. Technol. 51, 9-12 (2007).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
[CrossRef]

Chen, W.

Das, S.

S. Das, U. Chatterjee, C. Ghosh, and S. Gangopadhyay, “A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals,” Infrared Phys. Technol. 51, 9-12 (2007).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
[CrossRef]

Don, A. K.

V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
[CrossRef]

Emanueli, S.

Fossier, S.

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients; application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002-1006 (2005).
[CrossRef]

S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, J. Henningsen, A. Yelisseiev, L. Lobanov, O. Balachninaite, G. Slekys, and V. Siruptaikis, “Optical, vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981-2007 (2004).

J. Mangin, S. Fossier, P. Strimer, and G. Gadret, “Simultaneous determination of thermo- and electro-optic coefficients by Fabry-Pérot thermal scanning interferometry,” Proc. SPIE 5252, 423-430 (2004).
[CrossRef]

Frey, B. J.

D. B. Leviton and B. J. Frey, “Cryogenic high accuracy refraction measuring system--(CHARMS): a new facility for cryogenic infrared through far ultra-violet refractive index measurements,” Proc. SPIE 5494, 492-504 (2004).
[CrossRef]

Gadret, G.

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W1-71020W9 (2008).

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients; application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002-1006 (2005).
[CrossRef]

J. Mangin, S. Fossier, P. Strimer, and G. Gadret, “Simultaneous determination of thermo- and electro-optic coefficients by Fabry-Pérot thermal scanning interferometry,” Proc. SPIE 5252, 423-430 (2004).
[CrossRef]

Gangopadhyay, S.

S. Das, U. Chatterjee, C. Ghosh, and S. Gangopadhyay, “A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals,” Infrared Phys. Technol. 51, 9-12 (2007).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
[CrossRef]

Ghosh, C.

S. Das, U. Chatterjee, C. Ghosh, and S. Gangopadhyay, “A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals,” Infrared Phys. Technol. 51, 9-12 (2007).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
[CrossRef]

Hadni, A.

A. Hadni, Essentials of Modern Physics Applied to the Study of the Infrared (Pergamon Press, 1967).

Harris, T. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, Ch. 33 (McGraw-Hill, 1995).

Henningsen, J.

Kato, K.

E. Takaoka and K. Kato, “Tunable generation in HgGa2S4,” in Conference on Lasers and Electro-Optics (CLEO'98), Technical Digest (IEEE, 1998), p. 253.

K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (CLEO/QELS'2008), OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA11.
[PubMed]

Kurz, M.

M. Kurz, A. Pusztai, and G. Müller, “Development of a new powerful computer code CrysVUn especially designed for fast simulation of bulk crystal growth processes,” J. Cryst. Growth 198/199, 101-106 (1999).
[CrossRef]

Kuzmin, N. V.

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

Lahlou-Kassi, L.

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826-834 (1993).
[CrossRef]

Lanskii, G.

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
[CrossRef]

Laptev, V. B.

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Cryogenic high accuracy refraction measuring system--(CHARMS): a new facility for cryogenic infrared through far ultra-violet refractive index measurements,” Proc. SPIE 5494, 492-504 (2004).
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Chem. Phys. 5, 329-530 (1976).

Lobanov, L.

Malinovsky, A. L.

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

Mangin, J.

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W1-71020W9 (2008).

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients; application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002-1006 (2005).
[CrossRef]

J. Mangin, S. Fossier, P. Strimer, and G. Gadret, “Simultaneous determination of thermo- and electro-optic coefficients by Fabry-Pérot thermal scanning interferometry,” Proc. SPIE 5252, 423-430 (2004).
[CrossRef]

S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, J. Henningsen, A. Yelisseiev, L. Lobanov, O. Balachninaite, G. Slekys, and V. Siruptaikis, “Optical, vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981-2007 (2004).

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826-834 (1993).
[CrossRef]

Matveev, I. N.

S. A. Andrev, N. P. Andreeva, V. V. Badikov, I. N. Matveev, and S. M. Pshenichnikov, “Frequency up-conversion in a mercury thiogallate crystal,” Sov. J. Quantum Electron. 10, 1157-1158 (1980).
[CrossRef]

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Mennerat, G.

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W1-71020W9 (2008).

Mikami, T.

K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (CLEO/QELS'2008), OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA11.
[PubMed]

Mitin, K. V.

V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
[CrossRef]

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

Molesini, G.

M. Vannoni and G. Molesini, “Ray tracing approach to refractive index measurement of prism samples in a vacuum cell,” Proc. SPIE 7102, 71020V1-71020V7 (2008).

Müller, G.

M. Kurz, A. Pusztai, and G. Müller, “Development of a new powerful computer code CrysVUn especially designed for fast simulation of bulk crystal growth processes,” J. Cryst. Growth 198/199, 101-106 (1999).
[CrossRef]

Nazarov, G. S.

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

Noack, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3, R1-R19 (2001).
[CrossRef]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtoscond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177-183 (2000).
[CrossRef]

Okamoto, T.

K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (CLEO/QELS'2008), OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA11.
[PubMed]

Panyutin, V. L.

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Petrov, V.

S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, J. Henningsen, A. Yelisseiev, L. Lobanov, O. Balachninaite, G. Slekys, and V. Siruptaikis, “Optical, vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981-2007 (2004).

V. Petrov, F. Rotermund, and F. Noack, “Generation of high power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3, R1-R19 (2001).
[CrossRef]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtoscond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177-183 (2000).
[CrossRef]

F. Rotermund and V. Petrov, “Mercury thiogallate mid-infrared femtosecond optical parametric generator pumped at 1.25 μm by a Cr:forsterite regenerative amplifier,” Opt. Lett. 25, 746-748 (2000).
[CrossRef]

Pshenichnikov, S. M.

S. A. Andrev, N. P. Andreeva, V. V. Badikov, I. N. Matveev, and S. M. Pshenichnikov, “Frequency up-conversion in a mercury thiogallate crystal,” Sov. J. Quantum Electron. 10, 1157-1158 (1980).
[CrossRef]

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Pusztai, A.

M. Kurz, A. Pusztai, and G. Müller, “Development of a new powerful computer code CrysVUn especially designed for fast simulation of bulk crystal growth processes,” J. Cryst. Growth 198/199, 101-106 (1999).
[CrossRef]

Repyakhova, T. M.

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Ricci, P. C.

V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002).
[CrossRef]

Rotermund, F.

S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, J. Henningsen, A. Yelisseiev, L. Lobanov, O. Balachninaite, G. Slekys, and V. Siruptaikis, “Optical, vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981-2007 (2004).

V. Petrov, F. Rotermund, and F. Noack, “Generation of high power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3, R1-R19 (2001).
[CrossRef]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtoscond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177-183 (2000).
[CrossRef]

F. Rotermund and V. Petrov, “Mercury thiogallate mid-infrared femtosecond optical parametric generator pumped at 1.25 μm by a Cr:forsterite regenerative amplifier,” Opt. Lett. 25, 746-748 (2000).
[CrossRef]

Rozenson, A. E.

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Ryabov, E. A.

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

Rychik, O. V.

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Salaün, S.

Seregin, A. M.

V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
[CrossRef]

Seryoginand, A. M.

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

Shchebetova, N. I.

V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
[CrossRef]

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

Shchetinkina, T. A.

V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
[CrossRef]

Sinaiskii, V. V.

V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
[CrossRef]

Siruptaikis, V.

Slekys, G.

Strimer, P.

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients; application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002-1006 (2005).
[CrossRef]

J. Mangin, S. Fossier, P. Strimer, and G. Gadret, “Simultaneous determination of thermo- and electro-optic coefficients by Fabry-Pérot thermal scanning interferometry,” Proc. SPIE 5252, 423-430 (2004).
[CrossRef]

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826-834 (1993).
[CrossRef]

Syrbu, N. N.

V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002).
[CrossRef]

Takaoka, E.

E. Takaoka and K. Kato, “Tunable generation in HgGa2S4,” in Conference on Lasers and Electro-Optics (CLEO'98), Technical Digest (IEEE, 1998), p. 253.

Tezlevan, V. E.

V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002).
[CrossRef]

Thenot, I.

Thomas, M. E.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, Ch. 33 (McGraw-Hill, 1995).

Tiginyanu, I. M.

V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002).
[CrossRef]

Tropf, W. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, Ch. 33 (McGraw-Hill, 1995).

Trotsenko, N. K.

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Ursaki, V. V.

V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002).
[CrossRef]

Ustinov, N. D.

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Vannoni, M.

M. Vannoni and G. Molesini, “Ray tracing approach to refractive index measurement of prism samples in a vacuum cell,” Proc. SPIE 7102, 71020V1-71020V7 (2008).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

Yelisseiev, A.

Zondy, J.-J.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients; application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002-1006 (2005).
[CrossRef]

Infrared Phys. Technol. (1)

S. Das, U. Chatterjee, C. Ghosh, and S. Gangopadhyay, “A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals,” Infrared Phys. Technol. 51, 9-12 (2007).
[CrossRef]

J. Chem. Phys. (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Chem. Phys. 5, 329-530 (1976).

J. Cryst. Growth (1)

M. Kurz, A. Pusztai, and G. Müller, “Development of a new powerful computer code CrysVUn especially designed for fast simulation of bulk crystal growth processes,” J. Cryst. Growth 198/199, 101-106 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3, R1-R19 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826-834 (1993).
[CrossRef]

Opt. Commun. (3)

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006).
[CrossRef]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtoscond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177-183 (2000).
[CrossRef]

S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (4)

J. Mangin, S. Fossier, P. Strimer, and G. Gadret, “Simultaneous determination of thermo- and electro-optic coefficients by Fabry-Pérot thermal scanning interferometry,” Proc. SPIE 5252, 423-430 (2004).
[CrossRef]

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W1-71020W9 (2008).

M. Vannoni and G. Molesini, “Ray tracing approach to refractive index measurement of prism samples in a vacuum cell,” Proc. SPIE 7102, 71020V1-71020V7 (2008).

D. B. Leviton and B. J. Frey, “Cryogenic high accuracy refraction measuring system--(CHARMS): a new facility for cryogenic infrared through far ultra-violet refractive index measurements,” Proc. SPIE 5494, 492-504 (2004).
[CrossRef]

Quantum Electron. (2)

V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007).
[CrossRef]

V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004).
[CrossRef]

Sov. J. Quantum Electron. (2)

S. A. Andrev, N. P. Andreeva, V. V. Badikov, I. N. Matveev, and S. M. Pshenichnikov, “Frequency up-conversion in a mercury thiogallate crystal,” Sov. J. Quantum Electron. 10, 1157-1158 (1980).
[CrossRef]

V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979).
[CrossRef]

Other (5)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, Ch. 33 (McGraw-Hill, 1995).

E. Takaoka and K. Kato, “Tunable generation in HgGa2S4,” in Conference on Lasers and Electro-Optics (CLEO'98), Technical Digest (IEEE, 1998), p. 253.

A. Hadni, Essentials of Modern Physics Applied to the Study of the Infrared (Pergamon Press, 1967).

K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (CLEO/QELS'2008), OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA11.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Theoretical dispersion of c j coefficients used for the determination of Hg Ga 2 S 4 NTOC’s from 0.5 μ m to 11 μ m .

Fig. 2
Fig. 2

Schematic layout of the setup used for the study of the temperature tuning of an Hg Ga 2 S 4 based OPO.

Fig. 3
Fig. 3

Total converted energy ( signal + idler ) versus input pump energy.

Fig. 4
Fig. 4

(a) Temperature tuning of an Hg Ga 2 S 4 OPO: variation of the signal wavelength from 20 ° C to 80 ° C . Dotted line, theory; black stars, measurements. (b) Temperature tuning of an Hg Ga 2 S 4 OPO: variation of the idler wavelength from 20 ° C to 80 ° C . Dotted line, theory; black squares, measurements.

Fig. 5
Fig. 5

Comparison of idler wave temperature tuning obtained by using two sets of dispersion equations. Black squares, measurements. Dotted line, Eq. (11), this work; dash-dot line (T-K) from data of [16]. In both cases the temperature evolution is calculated following the theoretical methodology described in Section 2.

Fig. 6
Fig. 6

Slope of the idler wave temperature tuning curves versus impinging internal angle.

Tables (2)

Tables Icon

Table 1 Polynomial Fit of the Principal Linear Thermal Expansion and Normalized Thermo-Optic Coefficients of Hg Ga 2 S 4 : α i ( resp β i ) = a 0 + a 1 T a

Tables Icon

Table 2 Refractive Indices of Hg Ga 2 S 4 Orange Phase [10]

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n 2 1 = 1 c 2 ( i = 1 l ρ i λ i 2 + i = 1 l ρ i λ i 4 λ 2 λ i 2 ) .
n 2 ( T ) = A ( T ) + i = 1 l B i ( T ) λ 2 λ i 2 ( T ) ,
L n [ n ( T ) ] = 1 2 L n [ A ( T ) ( 1 + i = 1 l ( B i A ) ( T ) λ 2 λ i 2 ( T ) ) ] .
i = 1 l ( B i A ) ( T ) λ 2 λ i 2 ( T ) 1.
d d T L n [ n k ( T ) ] = 1 2 [ d d T L n [ A ( T ) ] + d d T L n [ 1 + i = 1 l ( B i A ) ( T ) λ k 2 λ i 2 ( T ) ] ] .
β k ( T ) = 1 | 2 n k 2 | T 0 [ d A d T + i = 1 l 1 [ λ k 2 λ i 2 ] d B i d T + i = 1 l 2 B i λ i [ λ k 2 λ i 2 ] 2 d λ i d T ] .
β ( λ , T ) = 1 | 2 n λ 2 | T 0 [ d A d T + i = 1 l 1 [ λ 2 λ i 2 ] d B i d T + i = 1 l 2 B i λ i [ λ 2 λ i 2 ] 2 d λ i d T ] .
β ( λ , T ) = c 0 ( λ ) + c 1 ( λ ) T + + c m ( λ ) T m = 0 m c j ( λ ) T j .
c j ( λ ) = 1 | 2 n λ 2 | T 0 [ X 1 + i = 1 l 1 [ λ 2 λ i 2 ] X i + i = 1 l 2 B i λ i [ λ 2 λ i 2 ] 2 X i ] ,
n ( λ , T ) = n ( λ , T 0 ) exp [ j = 0 m c j ( λ ) j + 1 ( T j + 1 T 0 j + 1 ) ] .
n ( λ , T ) n ( λ , T 0 ) { 1 + [ j = 0 m c j ( λ ) j + 1 ( T j + 1 T 0 j + 1 ) ] } ,
n i 2 = A i + B i λ 2 C i + D i λ 2 E i .
β ( λ , T ) = 1 2 | n λ 2 | T 0 [ d A d T + 1 [ λ 2 C ] d B d T + 1 [ λ 2 E ] d D d T + D [ λ 2 E ] 2 d E d T ] .
10 6 . β i ( λ , T ) = c 0 i ( λ ) + c 1 i ( λ ) T , with
c 0 e ( λ ) = 1 | 2 n e 2 ( λ ) | T 0 [ 249.6347255 + 2767.177716 ( λ 2 225 ) + 59.09023583 ( λ 2 0.09214633 ) + 1.480643361 ( λ 2 0.09214633 ) 2 ] , c 1 e ( λ ) = 1 | 2 n e 2 ( λ ) | T 0 [ 0.2922118196 + 6.789324599 ( λ 2 225 ) + 0.02183814714 ( λ 2 0.09214633 ) + 0.02258799232 ( λ 2 0.09214633 ) 2 ] , E ray
c 0 o ( λ ) = 1 | 2 n o 2 ( λ ) | T 0 [ 250.1026057 + 2406.32090 ( λ 2 225 ) + 48.75282651 ( λ 2 0.09568646 ) + 5.609705868 ( λ 2 0.09568646 ) 2 ] , c 1 o ( λ ) = 1 | 2 n o 2 ( λ ) | T 0 [ 0.3411234962 + 17.00833765 ( λ 2 225 ) + 0.07450567060 ( λ 2 0.09568646 ) + 0.008044041187 ( λ 2 0.09568646 ) 2 ] . O ray

Metrics