Abstract

High-repetition-rate low-pulse-energy near-infrared femtosecond laser pulses from a Ti:sapphire oscillator were used to micromachine localized refractive index structures inside ophthalmologic hydrogel polymers. The relation between laser-induced refractive index modification and different laser micromachining conditions was investigated in both pure and dye copolymerized hydrogel polymers. We studied the nonlinear absorption enhancement of the laser energy induced by copolymerized dyes during the micromachining process and the effects on increasing the laser scanning speed. We discussed the wavelength dependence and the laser pulse energy dependence of the micromachining results in a laser operation wavelength range from 700nmto1000nm. By changing the water concentration in pure and doped hydrogel polymers, we further investigated the critical role that water plays in the creation of large refractive index modifications in hydrogels without inducing optical breakdown or damage. A thermal model was used to explain the experimental results. By increasing nonlinear absorption in hydrogel polymers and optimizing femtosecond laser operation parameters, large refractive index modifications could be achieved with greatly increased laser micromachining speeds. In this paper, we discuss the optimization of material and laser parameters for the hydrogel material system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  3. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  4. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516-1518 (2001).
    [CrossRef]
  5. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13, 612-620 (2005).
    [CrossRef] [PubMed]
  6. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004).
    [CrossRef] [PubMed]
  7. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291-297 (2006).
    [CrossRef] [PubMed]
  8. X. P. Li, J. W. M. Chon, S. H. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32, 277-279 (2007).
    [CrossRef] [PubMed]
  9. L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14, 11901-11909 (2006).
    [CrossRef] [PubMed]
  10. L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers,” Appl. Opt. 47, 3100-3108 (2008).
    [CrossRef] [PubMed]
  11. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12, 4019-4024 (2004).
    [CrossRef] [PubMed]
  12. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  13. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352-354 (2005).
    [CrossRef] [PubMed]
  14. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824-1826 (2002).
    [CrossRef]
  15. P. Yao, G. J. Schneider, D. W. Prather, E. D. Wetzel, and D. J. O'Brien, “Fabrication of three-dimensional photonic crystals with multilayer photolithography,” Opt. Express 13, 2370-2376 (2005).
    [CrossRef] [PubMed]
  16. N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).
  17. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15, 3426-3436 (2007).
    [CrossRef] [PubMed]
  18. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
    [CrossRef]
  19. J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359-361 (2002).
    [CrossRef]
  20. S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci., Part B: Polym. Phys. 40, 2800-2806 (2002).
    [CrossRef]
  21. Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
    [CrossRef]
  22. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200-206 (2008).
    [CrossRef] [PubMed]
  23. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B 26, 595-602 (2009).
    [CrossRef]
  24. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16, 21914-21921 (2008).
    [CrossRef] [PubMed]
  25. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76, 351-354 (2003).
    [CrossRef]
  26. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
    [CrossRef] [PubMed]
  27. K. Kamada, K. Matsunaga, A. Yoshino, and K. Ohta, “Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation,” J. Opt. Soc. Am. B 20, 529-537 (2003).
    [CrossRef]
  28. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers Opt. 81, 1015-1047 (2005).
    [CrossRef]
  29. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).
    [PubMed]
  30. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
    [CrossRef]
  31. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
    [CrossRef] [PubMed]
  32. S. Grill and E. H. K. Stelzer, “Method to calculate lateral and axial gain factors of optical setups with a large solid angle,” J. Opt. Soc. Am. A 16, 2658-2665 (1999).
    [CrossRef]
  33. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690to1050 nm,” J. Opt. Soc. Am. B 13, 481-491 (1996).
    [CrossRef]
  34. C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade, and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
    [CrossRef]
  35. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16, 4029-4047 (2008).
    [CrossRef] [PubMed]
  36. J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using cross-linkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
    [CrossRef]

2009 (1)

2008 (5)

2007 (2)

2006 (3)

2005 (5)

2004 (3)

2003 (4)

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using cross-linkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76, 351-354 (2003).
[CrossRef]

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

K. Kamada, K. Matsunaga, A. Yoshino, and K. Ohta, “Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation,” J. Opt. Soc. Am. B 20, 529-537 (2003).
[CrossRef]

2002 (5)

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359-361 (2002).
[CrossRef]

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci., Part B: Polym. Phys. 40, 2800-2806 (2002).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).
[PubMed]

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002).
[CrossRef]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824-1826 (2002).
[CrossRef]

2001 (2)

1999 (4)

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

S. Grill and E. H. K. Stelzer, “Method to calculate lateral and axial gain factors of optical setups with a large solid angle,” J. Opt. Soc. Am. A 16, 2658-2665 (1999).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

1996 (2)

Aiello, L.

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Anderson, N.

Arai, A. Y.

Bakhareva, S. S.

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

Baldacchini, T.

Barlow, S.

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15, 3426-3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Blackwell, R. I.

Borrelli, N. F.

Bovatsek, J.

Brodeur, A.

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Cancado, L. G.

Cerami, L. R.

Cerullo, G.

Chen, V. W.

Chiodo, N.

Chon, J. W. M.

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Davis, K. M.

De Nicola, S.

Deubel, M.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).

Ding, L.

Dolotov, S. M.

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

Dong, W. T.

Drobizhev, M.

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Eaton, S. M.

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Evans, R. A.

Ferraro, P.

Finizio, A.

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gaeta, A. L.

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Glezer, E. N.

Grill, S.

Grossel, M. C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using cross-linkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Gu, M.

Hales, J. M.

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Hartl, I.

Haske, W.

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Herman, P. R.

Hermatschweiler, M.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).

Hirao, K.

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352-354 (2005).
[CrossRef] [PubMed]

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12, 4019-4024 (2004).
[CrossRef] [PubMed]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359-361 (2002).
[CrossRef]

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci., Part B: Polym. Phys. 40, 2800-2806 (2002).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Homoelle, D.

Horiike, M.

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci., Part B: Polym. Phys. 40, 2800-2806 (2002).
[CrossRef]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

Ippen, E. P.

Itoh, K.

Jani, D.

John, S.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).

Jones, L. W.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade, and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Kamada, K.

Karlgard, C. C. S.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade, and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Katayama, S.

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci., Part B: Polym. Phys. 40, 2800-2806 (2002).
[CrossRef]

Kim, A.

Knox, W. H.

Koo, J. S.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using cross-linkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Kopylova, T. N.

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

Kowalevicz, A. M.

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Künzler, J. F.

Kuroiwa, Y.

Labenski, G.

Laporta, P.

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Leung, K. T.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade, and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Li, X. P.

Linhardt, J.

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

Lopez, C.

Makarov, N. S.

Marder, S. R.

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15, 3426-3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Maselli, V.

Matsunaga, K.

Mazur, E.

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Mendonca, C. R.

Meshalkin, Y. P.

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

Minoshima, K.

Miura, K.

Moresoli, C.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade, and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Myachin, A. Y.

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Narita, Y.

Nishii, J.

Nishimura, N.

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Novotny, L.

O'Brien, D. J.

Ohta, K.

Osellame, R.

Ozin, G. A.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Pawar, S.

Perez-Willard, F.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).

Perry, J. W.

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15, 3426-3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Pierattini, G.

Ponomarenko, E. P.

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

Prather, D. W.

Qin, J. Q.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Qiu, J. R.

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359-361 (2002).
[CrossRef]

Rebane, A.

Reznichenko, A. V.

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

Richardson, K.

Richardson, M.

Riziotis, C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using cross-linkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Rockwell, B. A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Sarkar, D. K.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade, and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Schaffer, C. B.

Schneider, G. J.

Shah, L.

Shen, Y. Q.

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359-361 (2002).
[CrossRef]

Shih, T.

Si, J. H.

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359-361 (2002).
[CrossRef]

Smith, C.

Smith, P. G. R.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using cross-linkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Smith, T.

Sowa, S.

Stelzer, E. H. K.

Straub, M.

Streltsov, A. M.

Sugimoto, N.

Svetlichnyi, V. A.

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

Takeshima, N.

Tamaki, T.

Tanaka, S.

Tetreault, N.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Tilghman, R. W.

Tsutsumi, N.

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci., Part B: Polym. Phys. 40, 2800-2806 (2002).
[CrossRef]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

von Freymann, G.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).

Watanabe, W.

Webb, W. W.

Wegener, M.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).

Wetzel, E. D.

Wielandy, S.

Williams, R. B.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using cross-linkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Wu, S. H.

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Xu, C.

Yao, P.

Yin, A.

Yoshino, A.

Yoshino, F.

Zavelani-Rossi, M.

Zhai, J. F.

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359-361 (2002).
[CrossRef]

Zhang, H.

Zoubir, A.

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76, 351-354 (2003).
[CrossRef]

Appl. Phys. B: Lasers Opt. (2)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359-361 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade, and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Atmos. Res. (1)

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

J. Polym. Sci., Part B: Polym. Phys. (1)

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci., Part B: Polym. Phys. 40, 2800-2806 (2002).
[CrossRef]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Opt. Express (11)

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12, 4019-4024 (2004).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13, 612-620 (2005).
[CrossRef] [PubMed]

P. Yao, G. J. Schneider, D. W. Prather, E. D. Wetzel, and D. J. O'Brien, “Fabrication of three-dimensional photonic crystals with multilayer photolithography,” Opt. Express 13, 2370-2376 (2005).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291-297 (2006).
[CrossRef] [PubMed]

L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14, 11901-11909 (2006).
[CrossRef] [PubMed]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).
[PubMed]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16, 21914-21921 (2008).
[CrossRef] [PubMed]

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15, 3426-3436 (2007).
[CrossRef] [PubMed]

C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200-206 (2008).
[CrossRef] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16, 4029-4047 (2008).
[CrossRef] [PubMed]

Opt. Lett. (8)

X. P. Li, J. W. M. Chon, S. H. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32, 277-279 (2007).
[CrossRef] [PubMed]

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352-354 (2005).
[CrossRef] [PubMed]

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004).
[CrossRef] [PubMed]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824-1826 (2002).
[CrossRef]

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516-1518 (2001).
[CrossRef]

Opt. Mater. (1)

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using cross-linkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

Quantum Electron. (1)

Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Transmission spectra of pure and dye copolymerized Akreos hydrogel polymers. Four doping concentrations of Fluo-MA were investigated.

Fig. 2
Fig. 2

RI modification in pure and Fluo-MA copolymerized Akreos induced by femtosecond laser micromachining with different scanning speeds. As doping concentration was increased, larger RI modification could be observed when scanning speed was 1000 × faster.

Fig. 3
Fig. 3

Femtosecond laser pulses was focused (a) just above the hydrogel sample and (b) just below the top surface of the hydrogel.

Fig. 4
Fig. 4

(a) Measured transmitted laser power versus input laser power in pure Akreos hydrogel polymers; (b) measured transmitted laser power versus input laser power in doped Akreos hydrogel polymers.

Fig. 5
Fig. 5

(a) Nonlinear absorption for undoped and doped hydrogel obtained from data in Fig. 4 and (b) the difference of the nonlinear absorption of the doped hydrogel and the undoped hydrogel.

Fig. 6
Fig. 6

Temperature evolution of the pure and doped hydrogel materials at the laser focus. The steady-state temperature increase was about 160 ° C and 605 ° C for pure and doped Akreos, respectively.

Fig. 7
Fig. 7

RI modifications in pure and 0.5% Fluo-MA copolymerized Akreos hydrogels induced by femtosecond laser micromachining as a function of laser wavelength range from 700 nm to 1000 nm . Different pulse energies such as (a) 1.5 nJ and (b) 2 nJ were tested with different scanning speeds in the experiments.

Fig. 8
Fig. 8

RI modification as a function of doping concentration for a fixed scanning speed of 1 mm s .

Fig. 9
Fig. 9

RI modification induced in doped Akreos hydrogel polymers as a function of water concentration and dye doping.

Fig. 10
Fig. 10

RI changes in doped hydrogels as a function of water concentration and laser wavelength.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d = 1.22 λ NA ,
l = ( 3 2 cos θ cos 2 θ ) 1 2 1 cos θ d ,
I ( r , z ) = I ( 0 , 0 ) exp [ 2 ( r 2 a 2 + z 2 b 2 ) ] ,
E ( r , z ) = β [ I ( r , z ) ] 2 τ P     ,
Δ T ( r , z , t = 0 ) = β τ P [ I ( 0 , 0 ) ] 2 exp [ 4 ( r 2 a 2 + z 2 b 2 ) ] c p ρ ,
c p ρ t Δ T ( r , z , t ) k 2 Δ T ( r , z , t ) = 0 ,

Metrics