Abstract

The “equiangular method” of monitoring the vertical column density of atmospheric pollution gas basing on scattered solar radiation is reported. The “equiangular method” could be classified as the multiaxis differential absorption optical spectroscopy (DOAS) technique, but its principle is more rigorous. The equiangular method is based on two assumptions, “horizontal homogeneity” and “single scattering” of atmosphere, which are proved to be acceptable to a great extent by actual measurements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Platt and D. Perner, “Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
    [CrossRef]
  2. U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3 and SO2 by differential absorption in the near UV,” J. Geophys. Res. 85, 7453-7458 (1980).
    [CrossRef]
  3. M. S. Chan and Y. S. C. Andrew, “Measurement of atmospheric nitrogen dioxide column density by solar spectroscopy method,” Proc. SPIE 5832, 283-291 (2005).
    [CrossRef]
  4. H. Y. Zuo, J. Gao, J. Cheng, and J. G. Yang, “Measurement of NO2 concentration in atmosphere in Chengdu by solar spectra,” Spectrosc. Spectral Anal. (Beijing) 26, 1356-1359 (2006).
  5. J. G. Niu, Y. Sakurada, H. Kuze, and N. Takeuchi, “Measurement of atmospheric NO2 column density with Kitt Peak Solar Flux Atlas as a reference,” Opt. Rev. 4, 240-245 (1997).
    [CrossRef]
  6. G. Honninger, C. von Friedeburg, and U. Platt, “Multi axis differential optical absorption spectroscopy (MAX-DOAS),” Atmos. Chem. Phys. 4, 231-254 (2004).
    [CrossRef]
  7. R. J. Leigh, G. K. Corlett, U. Friess, and P. S. Monks, “Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide,” Appl. Opt. 45, 7504-7518 (2006).
    [CrossRef] [PubMed]
  8. H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki, “First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements,” Atmos. Chem. Phys. 8, 341-350 (2008).
    [CrossRef]
  9. X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
    [CrossRef]
  10. F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
    [CrossRef]
  11. A. Petritoli, F. Ravegnani, and G. Giorgio, “Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer,” Appl. Opt. 41, 5593-5599 (2002).
    [CrossRef] [PubMed]
  12. F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
    [CrossRef]
  13. A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
    [CrossRef]
  14. T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
    [CrossRef]
  15. F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
    [CrossRef]
  16. http://7-s.com.cn/product/EOInstruments/7/EOI_074.html

2008 (2)

H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki, “First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements,” Atmos. Chem. Phys. 8, 341-350 (2008).
[CrossRef]

X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
[CrossRef]

2006 (3)

H. Y. Zuo, J. Gao, J. Cheng, and J. G. Yang, “Measurement of NO2 concentration in atmosphere in Chengdu by solar spectra,” Spectrosc. Spectral Anal. (Beijing) 26, 1356-1359 (2006).

R. J. Leigh, G. K. Corlett, U. Friess, and P. S. Monks, “Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide,” Appl. Opt. 45, 7504-7518 (2006).
[CrossRef] [PubMed]

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

2005 (2)

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
[CrossRef]

M. S. Chan and Y. S. C. Andrew, “Measurement of atmospheric nitrogen dioxide column density by solar spectroscopy method,” Proc. SPIE 5832, 283-291 (2005).
[CrossRef]

2004 (3)

G. Honninger, C. von Friedeburg, and U. Platt, “Multi axis differential optical absorption spectroscopy (MAX-DOAS),” Atmos. Chem. Phys. 4, 231-254 (2004).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
[CrossRef]

T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
[CrossRef]

2003 (1)

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
[CrossRef]

2002 (1)

1997 (1)

J. G. Niu, Y. Sakurada, H. Kuze, and N. Takeuchi, “Measurement of atmospheric NO2 column density with Kitt Peak Solar Flux Atlas as a reference,” Opt. Rev. 4, 240-245 (1997).
[CrossRef]

1980 (1)

U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3 and SO2 by differential absorption in the near UV,” J. Geophys. Res. 85, 7453-7458 (1980).
[CrossRef]

1979 (1)

U. Platt and D. Perner, “Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
[CrossRef]

Akimoto, H.

H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki, “First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements,” Atmos. Chem. Phys. 8, 341-350 (2008).
[CrossRef]

Andrew, Y. S. C.

M. S. Chan and Y. S. C. Andrew, “Measurement of atmospheric nitrogen dioxide column density by solar spectroscopy method,” Proc. SPIE 5832, 283-291 (2005).
[CrossRef]

Aoki, K.

H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki, “First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements,” Atmos. Chem. Phys. 8, 341-350 (2008).
[CrossRef]

Brauers, T.

X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
[CrossRef]

Burrows, J.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
[CrossRef]

Burrows, J. P.

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
[CrossRef]

Chan, M. S.

M. S. Chan and Y. S. C. Andrew, “Measurement of atmospheric nitrogen dioxide column density by solar spectroscopy method,” Proc. SPIE 5832, 283-291 (2005).
[CrossRef]

Cheng, J.

H. Y. Zuo, J. Gao, J. Cheng, and J. G. Yang, “Measurement of NO2 concentration in atmosphere in Chengdu by solar spectra,” Spectrosc. Spectral Anal. (Beijing) 26, 1356-1359 (2006).

Corlett, G. K.

De Mazière, M.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

Deutschmann, T.

X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
[CrossRef]

Dix, B.

T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
[CrossRef]

Fietkau, S.

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
[CrossRef]

Fonteyn, D.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

Friedeburg, C. v.

T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
[CrossRef]

Friess, U.

Frieß, U.

T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
[CrossRef]

Gao, J.

H. Y. Zuo, J. Gao, J. Cheng, and J. G. Yang, “Measurement of NO2 concentration in atmosphere in Chengdu by solar spectra,” Spectrosc. Spectral Anal. (Beijing) 26, 1356-1359 (2006).

Garland, R. M.

X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
[CrossRef]

Giorgio, G.

Hak, C.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
[CrossRef]

Heckel, A.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
[CrossRef]

Hendrick, F.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

Honninger, G.

G. Honninger, C. von Friedeburg, and U. Platt, “Multi axis differential optical absorption spectroscopy (MAX-DOAS),” Atmos. Chem. Phys. 4, 231-254 (2004).
[CrossRef]

Irie, H.

H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki, “First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements,” Atmos. Chem. Phys. 8, 341-350 (2008).
[CrossRef]

Iwabuchi, H.

H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki, “First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements,” Atmos. Chem. Phys. 8, 341-350 (2008).
[CrossRef]

Junkermann, W.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
[CrossRef]

Kanaya, Y.

H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki, “First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements,” Atmos. Chem. Phys. 8, 341-350 (2008).
[CrossRef]

Kuze, H.

J. G. Niu, Y. Sakurada, H. Kuze, and N. Takeuchi, “Measurement of atmospheric NO2 column density with Kitt Peak Solar Flux Atlas as a reference,” Opt. Rev. 4, 240-245 (1997).
[CrossRef]

Kylling, A.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

Leigh, R. J.

Li, X.

X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
[CrossRef]

Medeke, T.

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
[CrossRef]

Monks, P. S.

Niu, J. G.

J. G. Niu, Y. Sakurada, H. Kuze, and N. Takeuchi, “Measurement of atmospheric NO2 column density with Kitt Peak Solar Flux Atlas as a reference,” Opt. Rev. 4, 240-245 (1997).
[CrossRef]

Oetjen, H.

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
[CrossRef]

Perner, D.

U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3 and SO2 by differential absorption in the near UV,” J. Geophys. Res. 85, 7453-7458 (1980).
[CrossRef]

U. Platt and D. Perner, “Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
[CrossRef]

Petritoli, A.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

A. Petritoli, F. Ravegnani, and G. Giorgio, “Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer,” Appl. Opt. 41, 5593-5599 (2002).
[CrossRef] [PubMed]

Platt, U.

G. Honninger, C. von Friedeburg, and U. Platt, “Multi axis differential optical absorption spectroscopy (MAX-DOAS),” Atmos. Chem. Phys. 4, 231-254 (2004).
[CrossRef]

T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
[CrossRef]

U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3 and SO2 by differential absorption in the near UV,” J. Geophys. Res. 85, 7453-7458 (1980).
[CrossRef]

U. Platt and D. Perner, “Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
[CrossRef]

Ravegnani, F.

Richter, A.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
[CrossRef]

Rozanov, A.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
[CrossRef]

Sakurada, Y.

J. G. Niu, Y. Sakurada, H. Kuze, and N. Takeuchi, “Measurement of atmospheric NO2 column density with Kitt Peak Solar Flux Atlas as a reference,” Opt. Rev. 4, 240-245 (1997).
[CrossRef]

Sanghavi, S.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
[CrossRef]

Schofield, R.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

Shao, M.

X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
[CrossRef]

Shimizu, A.

H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki, “First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements,” Atmos. Chem. Phys. 8, 341-350 (2008).
[CrossRef]

Sinreich, R.

T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
[CrossRef]

Takeuchi, N.

J. G. Niu, Y. Sakurada, H. Kuze, and N. Takeuchi, “Measurement of atmospheric NO2 column density with Kitt Peak Solar Flux Atlas as a reference,” Opt. Rev. 4, 240-245 (1997).
[CrossRef]

Tarsu, T.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
[CrossRef]

Van Roozendael, M.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

von Friedeburg, C.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

G. Honninger, C. von Friedeburg, and U. Platt, “Multi axis differential optical absorption spectroscopy (MAX-DOAS),” Atmos. Chem. Phys. 4, 231-254 (2004).
[CrossRef]

Wagner, T.

X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
[CrossRef]

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
[CrossRef]

Wahner, A.

X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
[CrossRef]

Wittrock, F.

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
[CrossRef]

Yang, J. G.

H. Y. Zuo, J. Gao, J. Cheng, and J. G. Yang, “Measurement of NO2 concentration in atmosphere in Chengdu by solar spectra,” Spectrosc. Spectral Anal. (Beijing) 26, 1356-1359 (2006).

Zuo, H. Y.

H. Y. Zuo, J. Gao, J. Cheng, and J. G. Yang, “Measurement of NO2 concentration in atmosphere in Chengdu by solar spectra,” Spectrosc. Spectral Anal. (Beijing) 26, 1356-1359 (2006).

Appl. Opt. (2)

Atmos. Chem. Phys. (7)

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund-Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966 (2004).
[CrossRef]

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, W. Junkermann, and J. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909-918 (2005).
[CrossRef]

G. Honninger, C. von Friedeburg, and U. Platt, “Multi axis differential optical absorption spectroscopy (MAX-DOAS),” Atmos. Chem. Phys. 4, 231-254 (2004).
[CrossRef]

F. Hendrick, M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, “Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations,” Atmos. Chem. Phys. 6, 93-108 (2006).
[CrossRef]

H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki, “First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements,” Atmos. Chem. Phys. 8, 341-350 (2008).
[CrossRef]

X. Li, T. Brauers, M. Shao, R. M. Garland, T. Wagner, T. Deutschmann, and A. Wahner, “MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions,” Atmos. Chem. Phys. 8, 17661-17690 (2008).
[CrossRef]

F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS Measurements of atmospheric trace gases in Ny-A° lesund,” Atmos. Chem. Phys. 3, 6109-6145 (2003).
[CrossRef]

J. Geophys. Res. (3)

U. Platt and D. Perner, “Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
[CrossRef]

U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3 and SO2 by differential absorption in the near UV,” J. Geophys. Res. 85, 7453-7458 (1980).
[CrossRef]

T. Wagner, B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, “MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols--principles and information content,” J. Geophys. Res. 109, D22205 (2004).
[CrossRef]

Opt. Rev. (1)

J. G. Niu, Y. Sakurada, H. Kuze, and N. Takeuchi, “Measurement of atmospheric NO2 column density with Kitt Peak Solar Flux Atlas as a reference,” Opt. Rev. 4, 240-245 (1997).
[CrossRef]

Proc. SPIE (1)

M. S. Chan and Y. S. C. Andrew, “Measurement of atmospheric nitrogen dioxide column density by solar spectroscopy method,” Proc. SPIE 5832, 283-291 (2005).
[CrossRef]

Spectrosc. Spectral Anal. (Beijing) (1)

H. Y. Zuo, J. Gao, J. Cheng, and J. G. Yang, “Measurement of NO2 concentration in atmosphere in Chengdu by solar spectra,” Spectrosc. Spectral Anal. (Beijing) 26, 1356-1359 (2006).

Other (1)

http://7-s.com.cn/product/EOInstruments/7/EOI_074.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The principle diagram of the equiangular method.

Fig. 2
Fig. 2

Spectrum of direct solar radiation collected in the plane and the spectrum of scattered solar radiation collected on the ground.

Fig. 3
Fig. 3

Experiment set up to capture the solar radiation.

Fig. 4
Fig. 4

Map of ChengDu.

Fig. 5
Fig. 5

The retrieved tropospheric VCD ( N ) of N O 2 by using direct solar radiation and equiangular method (a) near the city center of ChengDu, on Feb. 12, 2009; (b) in Sichuan University, on March 19, 2009; (c) in western suburb of ChengDu, on March 22, 2009; (d) in western suburb of ChengDu, on March 24, 2009.

Fig. 6
Fig. 6

Errors between the measuring results from the equiangular method with γ = 270 ° and the results from the direct solar radiation (a) in western suburb of ChengDu, on March 22, 2009; (b) in western suburb of ChengDu, on March 24, 2009.

Fig. 7
Fig. 7

The measuring results from the equiangular method and the results from the direct solar radiation, the spectra are collected in the city center of ChengDu (a) on March 19, 2009, with OD at 532 nm being about 0.3; (b) on March 23, 2009, with OD at 532 nm being about 0.6; (c) on March 25, 2009, with OD at 532 nm being about 0.4.

Fig. 8
Fig. 8

Errors between the measuring results from the equiangular method and the results from the direct solar radiation, the spectra is collected in the city center of ChengDu (a) on March 19, 2009, with OD being about 0.3; (b) on March 23, 2009, with OD being about 0.6; (c) on March 25, 2009, with OD being about 0.4.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( λ ) = I 0 ( λ ) exp ( h l n ( h ) σ ( λ ) d h cos θ h l δ ( λ , h ) d h cos θ ) ,
d i s ( λ , h ) = I 1 ( λ ) ϵ ( ϕ , h , λ ) d v Ω exp ( 0 h n ( h ) σ ( λ ) d h cos α 0 h δ ( λ , h ) d h cos α ) ,
Ω = A ( h cos α ) 2 .
d i s ( λ , h ) = I 1 ( λ ) ϵ ( ϕ , h , λ ) d s d h cos α A ( h cos α ) 2 exp ( 0 h n ( h ) σ ( λ ) d h cos α 0 h δ ( λ , h ) d h cos α ) .
i s ( λ , h ) = I 1 ( λ ) ϵ ( ϕ , h , λ ) s ( h ) d h h 2 cos α exp ( 0 h n ( h ) σ ( λ ) d h cos α 0 h δ ( λ , h ) d h cos α ) .
i s ( λ , h ) = I 0 ( λ ) ϵ ( ϕ , h , λ ) s ( h ) h 2 cos α exp ( ( h l n ( h ) σ ( λ ) d h cos θ + 0 h n ( h ) σ ( λ ) d h cos α ) ( h l δ ( λ , h ) d h cos θ + 0 h δ ( λ , h ) d h cos α ) ) d h .
I s ( λ ) = I 0 ( λ ) 0 l ϵ ( ϕ , h , λ ) s ( h ) h 2 cos α exp ( ( h l n ( h ) σ ( λ ) d h cos θ + 0 h n ( h ) σ ( λ ) d h cos α ) ( h l δ ( λ , h ) d h cos θ + 0 h δ ( λ , h ) d h cos α ) ) d h .
I s ( λ ) = I 0 ( λ ) 0 l ϵ ( ϕ , h , λ ) s ( h ) h 2 cos β exp ( σ ( λ ) ( h l n ( h ) d h + 0 h n ( h ) d h cos β ) ( h l δ ( λ , h ) d h + 0 h δ ( λ , h ) d h cos β ) ) d h ,
I s ( λ ) I 0 ( λ ) = exp ( σ ( λ ) N cos β ) exp ( τ sct ( λ ) cos β ) 0 l ϵ ( ϕ , h , λ ) s ( h ) h 2 cos β d h .
η = exp ( τ sct ( λ ) cos β ) 0 l ϵ ( ϕ , h , λ ) s ( h ) h 2 cos β d h ,
R ( λ ) = κ η .
Error = | VCD e VCD d | VCD d × 100 %

Metrics