Abstract

We present a theoretical study of the spontaneous emission of an optical emitter close to a metal nanostructure of arbitrary shape. The modification of the corresponding radiative and nonradiative decay rates and resulting quantum efficiencies, expressed on the basis of a semiclassical dipole model in terms of the local plasmonic mode density, is calculated by means of the rigorous formulation of the Green’s theorem surface integral equations. Metal losses and the intrinsic nonradiative decay rate of the molecules are properly considered, presenting relationships valid in general for arbitrary intrinsic quantum yields. Resonant enhancement of the radiative and nonradiative decay rates of a fluorescent molecule is observed when coupled to an optical dimer nanoantenna. Upon varying the dipole position, it is possible to obtain a predominant enhancement of radiative decay rates over the nonradiative counterpart, resulting in an increase of the internal quantum efficiency. For emitters positioned in the gap, quantum efficiency enhancements from an intrinsic value of 1% to 75% are possible.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
    [CrossRef]
  2. H. Kuhn, “Classical aspects of energy transfer in molecular system,” J. Chem. Phys. 53, 101-108 (1969).
    [CrossRef]
  3. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1-65 (1978).
    [CrossRef]
  4. M. S. Yeung and T. K. Gustafson, “Spontaneous emission near an absorbing dielectric surface,” Phys. Rev. A 54, 5227-5242 (1996).
    [CrossRef] [PubMed]
  5. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
    [CrossRef]
  6. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
    [CrossRef]
  7. C. Hankel and V. Sandoghdar, “Single-molecule spectroscopy near structured dielectrics,” Opt. Commun. 158, 250-262 (1998).
    [CrossRef]
  8. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
    [CrossRef] [PubMed]
  9. L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
    [CrossRef]
  10. M. Thomas, J.-J. Greffet, and R. Carminati, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
    [CrossRef]
  11. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
    [CrossRef]
  12. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
    [CrossRef]
  13. G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101 (2008).
    [CrossRef]
  14. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecular fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  15. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  16. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong modifications of the spontaneous emission of light sources by single plasmonic nanoantennas,” Nano Lett. 7, 2871-2875 (2007).
    [CrossRef] [PubMed]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
    [CrossRef]
  18. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  19. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53-62 (2007).
    [CrossRef] [PubMed]
  20. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  21. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005).
    [CrossRef] [PubMed]
  22. J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561-1563 (2005).
    [CrossRef] [PubMed]
  23. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007).
    [CrossRef] [PubMed]
  24. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
    [CrossRef] [PubMed]
  25. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266-14274 (2007).
    [CrossRef] [PubMed]
  26. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nanoantennas: angular emission and collection efficiency,” New J. Phys. 10, 105005 (2008).
    [CrossRef]
  27. A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10, 105015 (2008).
    [CrossRef]
  28. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
    [CrossRef]
  29. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmons polaritons,” Opt. Express 15, 12131-12144 (2007).
    [CrossRef] [PubMed]
  30. V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires with arbitrary cross section by means of Green's theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822-2830 (2007).
    [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  32. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744-2748 (1974).
    [CrossRef]
  33. V. Giannini and J. A. Sánchez-Gil, “Excitation and emission enhancement of single molecule fluorescence through multiple surface plasmon resonances on metal trimer nanoantennas,” Opt. Lett. 33, 899-901 (2008).
    [CrossRef] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  35. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  36. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736-17746 (2007).
    [CrossRef] [PubMed]
  37. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
    [CrossRef] [PubMed]
  38. T. H. Taminau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234-237 (2008).
    [CrossRef]

2008 (6)

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nanoantennas: angular emission and collection efficiency,” New J. Phys. 10, 105005 (2008).
[CrossRef]

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10, 105015 (2008).
[CrossRef]

T. H. Taminau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234-237 (2008).
[CrossRef]

V. Giannini and J. A. Sánchez-Gil, “Excitation and emission enhancement of single molecule fluorescence through multiple surface plasmon resonances on metal trimer nanoantennas,” Opt. Lett. 33, 899-901 (2008).
[CrossRef] [PubMed]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
[CrossRef]

2007 (9)

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires with arbitrary cross section by means of Green's theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822-2830 (2007).
[CrossRef]

N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmons polaritons,” Opt. Express 15, 12131-12144 (2007).
[CrossRef] [PubMed]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266-14274 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736-17746 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53-62 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong modifications of the spontaneous emission of light sources by single plasmonic nanoantennas,” Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

2006 (4)

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecular fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

2005 (5)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561-1563 (2005).
[CrossRef] [PubMed]

2004 (2)

L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

M. Thomas, J.-J. Greffet, and R. Carminati, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

2002 (1)

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

1998 (2)

C. Hankel and V. Sandoghdar, “Single-molecule spectroscopy near structured dielectrics,” Opt. Commun. 158, 250-262 (1998).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

1996 (2)

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
[CrossRef]

M. S. Yeung and T. K. Gustafson, “Spontaneous emission near an absorbing dielectric surface,” Phys. Rev. A 54, 5227-5242 (1996).
[CrossRef] [PubMed]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

1974 (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744-2748 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1969 (1)

H. Kuhn, “Classical aspects of energy transfer in molecular system,” J. Chem. Phys. 53, 101-108 (1969).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
[CrossRef]

Agio, M.

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10, 105015 (2008).
[CrossRef]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecular fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Baffou, G.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266-14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecular fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Blanco, L. A.

L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Brandl, D. W.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53-62 (2007).
[CrossRef] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

M. Thomas, J.-J. Greffet, and R. Carminati, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744-2748 (1974).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Colas des Francs, G.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101 (2008).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

Dujardin, E.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101 (2008).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

García de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Giannini, V.

Girard, C.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101 (2008).
[CrossRef]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong modifications of the spontaneous emission of light sources by single plasmonic nanoantennas,” Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736-17746 (2007).
[CrossRef] [PubMed]

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561-1563 (2005).
[CrossRef] [PubMed]

M. Thomas, J.-J. Greffet, and R. Carminati, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Guckenberger, R.

Gustafson, T. K.

M. S. Yeung and T. K. Gustafson, “Spontaneous emission near an absorbing dielectric surface,” Phys. Rev. A 54, 5227-5242 (1996).
[CrossRef] [PubMed]

Hakanson, U.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53-62 (2007).
[CrossRef] [PubMed]

Hankel, C.

C. Hankel and V. Sandoghdar, “Single-molecule spectroscopy near structured dielectrics,” Opt. Commun. 158, 250-262 (1998).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Henkel, C.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Issa, N. A.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kaminski, F.

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Khurgin, J. B.

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Koenderink, A. F.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

Kuhn, H.

H. Kuhn, “Classical aspects of energy transfer in molecular system,” J. Chem. Phys. 53, 101-108 (1969).
[CrossRef]

Kühn, S.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Martin, O. J. F.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101 (2008).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Mertens, H.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Mohammadi, A.

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10, 105015 (2008).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736-17746 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong modifications of the spontaneous emission of light sources by single plasmonic nanoantennas,” Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Nordlander, P.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53-62 (2007).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266-14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecular fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Polman, A.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744-2748 (1974).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

Sandoghdar, V.

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10, 105015 (2008).
[CrossRef]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

C. Hankel and V. Sandoghdar, “Single-molecule spectroscopy near structured dielectrics,” Opt. Commun. 158, 250-262 (1998).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744-2748 (1974).
[CrossRef]

Soref, R. A.

Stefani, F. D.

T. H. Taminau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nanoantennas: angular emission and collection efficiency,” New J. Phys. 10, 105005 (2008).
[CrossRef]

Sun, G.

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Taminau, T. H.

T. H. Taminau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nanoantennas: angular emission and collection efficiency,” New J. Phys. 10, 105005 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Thomas, M.

M. Thomas, J.-J. Greffet, and R. Carminati, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Van Hulst, N. F.

T. H. Taminau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nanoantennas: angular emission and collection efficiency,” New J. Phys. 10, 105005 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Vigoureux, J. M.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53-62 (2007).
[CrossRef] [PubMed]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Yeung, M. S.

M. S. Yeung and T. K. Gustafson, “Spontaneous emission near an absorbing dielectric surface,” Phys. Rev. A 54, 5227-5242 (1996).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53-62 (2007).
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
[CrossRef]

M. Thomas, J.-J. Greffet, and R. Carminati, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

J. Chem. Phys. (2)

H. Kuhn, “Classical aspects of energy transfer in molecular system,” J. Chem. Phys. 53, 101-108 (1969).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744-2748 (1974).
[CrossRef]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong modifications of the spontaneous emission of light sources by single plasmonic nanoantennas,” Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. H. Taminau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Nature (London) (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

New J. Phys. (2)

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nanoantennas: angular emission and collection efficiency,” New J. Phys. 10, 105005 (2008).
[CrossRef]

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10, 105015 (2008).
[CrossRef]

Opt. Commun. (2)

C. Hankel and V. Sandoghdar, “Single-molecule spectroscopy near structured dielectrics,” Opt. Commun. 158, 250-262 (1998).
[CrossRef]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
[CrossRef]

Phys. Rev. A (1)

M. S. Yeung and T. K. Gustafson, “Spontaneous emission near an absorbing dielectric surface,” Phys. Rev. A 54, 5227-5242 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (5)

L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecular fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Science (3)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561-1563 (2005).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of the scattering geometry for a dipole source p 0 in the vicinity of a dimer nanoantenna.

Fig. 2
Fig. 2

SCS for longitudinal polarization of silver dimer nanoantennas consisting of two rectangular nanowires of dimensions 20 × 200 nm 2 with gap widths Δ = 5 , 10 , 15 , 20 nm (solid curves, with redshifted bands as the gap decreases); a single rectangular nanowire (dashed curve).

Fig. 3
Fig. 3

Spectral dependence of the normalized (a,b) radiative and (c,d) nonradiative decay rates, and (e,f) quantum yield, of a vertical emitter (left column) and of a horizontal emitter (right column). The emitter is placed at the center of the gap of the uncoupled nanoantenna with Δ=100 nm; each rectangular nanowire is 20 × 200 nm 2 . Intrinsic quantum yields: η0=99% (solid curves), η0=50% (dashed curves), and η0– 1% (dash-dotted curves).

Fig. 4
Fig. 4

Spectral dependence of the normalized (a),(b) radiative decay rates; (c),(d) nonradiative decay rates; and (e),(f) quantum yield of a vertical emitter (left column) and of a horizontal emitter (right column). The emitter is placed at the center of the gap of the coupled nanoantenna with Δ = 10 nm ; each rectangular nanowire is 20 × 200 nm 2 . Intrinsic quantum yields are η 0 = 99 % (solid curves), η 0 = 50 % (dashed curves), and η 0 = 1 % (dashed-dotted curves).

Fig. 5
Fig. 5

Normalized (a) radiative decay rates, (b) nonradiative decay rates, and (c) quantum yield of a horizontal emitter moving in the vicinity of the coupled nanoantenna vertically along two different paths: (i) from the center of the gap z = 0 up to z = 600 nm (curves without circles) and (ii) from 1.5 nm above the center of one of the rectangular nanowires up to z = 600 nm (curves with circles). Intrinsic quantum yield of η 0 = 99 % (solid curves), η 0 = 50 % (dashed curves), and η 0 = 1 % (dashed-dotted curves). Δ = 10 nm and λ = 814 nm . Each rectangular nanowire is 20 × 200 nm 2 .

Fig. 6
Fig. 6

Normalized (a) radiative decay rates, (b) nonradiative decay rates, and (c) quantum yield of an horizontal emitter moving horizontally from above the gap center x = 0 to x = 500 nm to the right of the coupled nanoantenna at two fixed vertical positions: z = 5 nm (curves with circles) and at z = 10 nm (curves without circles). Δ = 10 nm and λ = 814 nm . Each rectangular nanowire is 20 × 200 nm 2 .

Fig. 7
Fig. 7

Near electric field intensity in logarithmic scale of (a) a horizontal dipole and (b) a vertical dipole placed at the gap center of a silver nanoantenna. Each nanowire has dimensions 20 × 200 nm 2 and the gap is Δ = 10 nm . The dipoles have a unitary dipole moment and emit at λ = 814 nm . Only the field scattered by the nanoantenna is plotted.

Fig. 8
Fig. 8

Far-field intensity patterns ( λ = 814 nm ) of horizontal and vertical dipoles for a coupled dimer nanoantenna with Δ = 10 nm as in Fig. 7. The horizontal dipole is located at the gap center, whereas the vertical one is shifted z = 5 nm up from the gap center. The contributions from both the direct dipole field and the field scattered by the nanoantenna are considered (see text). For comparison, the isolated dipole contribution ( × 100 ) is also shown for the vertical polarization (two small horizontally aligned lobes). Each rectangular nanowire is 20 × 200 nm 2 .

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

d 2 p d t 2 + ω 2 p + γ 0 d p d t = e 2 m [ p 0 * E loc ] p 0 p 0 2 ,
p ( t ) = p 0 e i ω t e ( γ 0 2 ) t .
γ 0 = 1 τ 0 = γ r 0 + γ nr 0 ,
γ r 0 = 2 n e 2 3 m c 3 ω 2 ,
η 0 = γ r 0 γ 0 .
p ( t ) = p 0 e i Ω t = p 0 e i ω t e ( γ 2 ) t ,
E loc ( t ) = E 0 e i Ω t .
Ω = i γ 0 2 + ω 1 γ 0 2 4 ω 2 e 2 p 0 2 m ω 2 p 0 * E 0 .
Δ ω ω ω = γ 0 2 8 ω + e 2 2 p 0 2 m ω R ( p 0 * E 0 ) ,
γ = γ 0 + e 2 m ω p 0 2 I ( p 0 * E 0 ) .
γ γ 0 = 1 + 3 η 0 c 3 2 p 0 2 n ω 3 I ( p 0 * E 0 ) .
γ = 1 τ = γ nr 0 + γ nr + γ r ,
η = γ r γ nr 0 + γ nr + γ r ;
η η 0 = γ r ( γ nr + γ r + γ nr 0 ) γ r 0 ( γ r 0 + γ nr 0 ) = γ 0 γ γ r γ r 0 .
2 H + k 2 H = 4 π c × J .
J = ρ t ,
ρ ( r , ω ) = p 0 δ ( r r 0 ) e i ω t ,
H ( dip ) ( R l , r 0 ) + 1 4 π j Γ j [ H j ( t ) G ( out ) ( R l , R j ( t ) ) N j G ( out ) ( R l , R j ( t ) ) L j ( t ) ] d t = H l ( t ) , l = 1 , , N ,
1 4 π Γ j [ H j ( t ) G j ( in ) ( R l , R j ( t ) ) N j ε j ( in ) ( ω ) ε ( ω ) G j ( in ) ( R l , R j ( t ) ) L j ( t ) ] d t = 0 , l , j = 1 , , N .
G ( out ) ( r , R ) = i π H 0 ( 1 ) [ ω c ε | r R | ] ,
G j ( in ) ( r , R ) = i π H 0 ( 1 ) [ ω c ε j ( in ) | r R | ] .
H j ( t ) = | H ( out ) ( r ) | r R j + ( t ) = | H ( in ) ( r ) | r R j ( t ) ,
L j ( t ) = [ H ( out ) ( r ) N j ] r R j + ( t ) = ε ε j ( in ) [ H ( in ) ( r ) N j ] r R j ( t ) ,
H ( dip ) ( R l , r 0 ) = π ω 2 c 2 ( ( x l x 0 ) p 0 z ( z l z 0 ) ) p 0 x ( x l x 0 ) 2 + ( z l z 0 ) 2 × H 1 ( 1 ) ( ω c ( x l x 0 ) 2 + ( z l z 0 ) 2 ) ,
E x ( p , scat ) ( r 0 ) = i c 4 π ω ε j Γ [ H ( t ) 2 G ( out ) ( r 0 , R j ( t ) ) z N j G ( out ) ( r 0 , R j ( t ) ) z L j ( t ) ] d t ,
E y ( p , scat ) ( r 0 ) = 0 ,
E z ( p , scat ) ( r 0 ) = i c 4 π ω ε Γ [ H j ( t ) 2 G ( out ) ( r 0 , R j ( t ) ) x N j G ( out ) ( r 0 , R j ( t ) ) x L j ( t ) ] d t .
P far ( ω ) = 0 2 π | S ( θ | ω ) | 2 | E 0 i | 2 d θ ,
S ( θ | ω ) = i ( c 8 π ω ε ) 1 2 j Γ j [ i ω c ε [ η j ( t ) sin θ ξ j ( t ) cos θ ] H j ( t ) L j ( t ) ] × exp [ i ω c ε [ ξ j ( t ) sin θ + η j ( t ) cos θ ] ] d t .
P far P = γ r γ r + γ nr ,
γ r γ r 0 = P η 0 ( η 0 + α 1 ) ,
γ nr 0 + γ nr γ nr 0 = α 1 P 1 η 0 + P .
η = γ r γ = P α ( η 0 + α 1 ) .
I I 0 = η ( ω fluo ) η 0 | p 0 E loc ( r 0 , ω abs ) p 0 E exc ( r 0 , ω abs ) | 2 ,

Metrics