Abstract

The application of metallized photonic crystal fibers in surface plasmon resonance sensors of biolayer thickness is demonstrated. By the judicious design of photonic crystal fibers, the effective refractive index of the fundamental core mode can be tuned to enable efficient phase matching with a plasmon anywhere from the visible to near IR. Among other advantages of the presented sensors we find high sensitivity in the visible and near-IR spectral regions, as well as high coupling efficiency from an external Gaussian beam. Based on the numerical simulations, we present designs using various types of photonic crystal fibers, including holey fibers with and without defect, as well as honeycomb photonic crystal fibers. We find that in addition to the fundamental plasmonic excitation, higher order plasmonic modes can also be excited. In principle, using several plasmonic excitations at the same time can enhance sensor detection limit. Both amplitude and spectral-based methodologies for the detection of changes in the biolayer thickness are discussed. Sensor resolutions of the biolayer thickness as high as 0.039–0.044 nm are demonstrated in the whole 600–920 nm region. Finally, we perform analysis of the effect of imperfections in the metal layer geometry on the sensor sensitivity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Agranovich and D. L. Mills, Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).
  2. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2140 (1968).
  3. B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299-304 (1983).
    [CrossRef]
  4. J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
    [CrossRef]
  5. L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24, 1469-1470 (1988).
    [CrossRef]
  6. A. V. Kabashin and P. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5-8 (1998).
    [CrossRef]
  7. A. N. Grigorenko, P. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917-3919 (1999).
    [CrossRef]
  8. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541-566 (1997).
    [CrossRef] [PubMed]
  9. C. P. Lavers and J. S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B 22, 475-481 (1994).
    [CrossRef]
  10. R. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261-267 (1995).
    [CrossRef]
  11. M. N. Weiss, R. Srivastava, and H. Grogner, “Experimental investigation of a surface plasmon-based integrated optic humidity sensor,” Electron. Lett. 32, 842-843 (1996).
    [CrossRef]
  12. J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B 39, 286-290 (1997).
    [CrossRef]
  13. J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
    [CrossRef]
  14. A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
    [CrossRef]
  15. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118-1129 (2007).
    [CrossRef]
  16. M. Skorobogatiy and A. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
    [CrossRef]
  17. M. Skorobogatiy and A. Kabashin, “Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide,” Opt. Express 14, 8419-8424 (2006).
    [CrossRef] [PubMed]
  18. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616-11621 (2006).
    [CrossRef] [PubMed]
  19. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24, 1423-1429 (2007).
    [CrossRef]
  20. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413-11426 (2007).
    [CrossRef] [PubMed]
  21. A. Hassani, B. Gauvreau, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for applications in the visible and near-IR,” Electromagnetics 28, 198-213 (2008).
    [CrossRef]
  22. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Surface plasmon resonance-like fiber-based sensor at terahertz frequencies,” J. Opt. Soc. Am. B 25, 1771-1775 (2008).
    [CrossRef]
  23. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270-16278 (2007).
    [CrossRef] [PubMed]
  24. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427-8432 (2008).
    [CrossRef] [PubMed]
  25. P. J. A. Sazio, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583-1586 (2006).
    [CrossRef] [PubMed]
  26. X. H. Yang and L. L. Wang, “Silver nanocrystals modified microstructured polymer optical fibers for chemical and optical sensing,” Opt. Commun. 280, 368-373 (2007).
    [CrossRef]
  27. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Optical fiber hybrid-surface plasmon polaritons,” Appl. Phys. Lett. 93, 111102 (2008).
    [CrossRef]
  28. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
    [CrossRef]
  29. K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method,” Anal. Chem. 74, 6323-6329 (2002).
    [CrossRef]
  30. S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83-88 (1993).
    [CrossRef]

2008 (5)

A. Hassani, B. Gauvreau, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for applications in the visible and near-IR,” Electromagnetics 28, 198-213 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Surface plasmon resonance-like fiber-based sensor at terahertz frequencies,” J. Opt. Soc. Am. B 25, 1771-1775 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Optical fiber hybrid-surface plasmon polaritons,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427-8432 (2008).
[CrossRef] [PubMed]

2007 (5)

2006 (4)

2004 (1)

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

2002 (1)

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method,” Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

2001 (1)

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

1999 (1)

A. N. Grigorenko, P. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

1998 (1)

A. V. Kabashin and P. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5-8 (1998).
[CrossRef]

1997 (2)

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541-566 (1997).
[CrossRef] [PubMed]

J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

1996 (2)

M. N. Weiss, R. Srivastava, and H. Grogner, “Experimental investigation of a surface plasmon-based integrated optic humidity sensor,” Electron. Lett. 32, 842-843 (1996).
[CrossRef]

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

1995 (1)

R. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261-267 (1995).
[CrossRef]

1994 (1)

C. P. Lavers and J. S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B 22, 475-481 (1994).
[CrossRef]

1993 (1)

1988 (1)

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24, 1469-1470 (1988).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2140 (1968).

Agranovich, V. M.

V. M. Agranovich and D. L. Mills, Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Al-Bader, S. J.

Bartholomew, D. U.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Bartlett, P. N.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Brynda, E.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Carr, R.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Cox, F. M.

Ctyroky, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Dostalek, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Dupuis, A.

Elkind, J.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Fassi Fehri, M.

A. Hassani, B. Gauvreau, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for applications in the visible and near-IR,” Electromagnetics 28, 198-213 (2008).
[CrossRef]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413-11426 (2007).
[CrossRef] [PubMed]

Furlong, C. E.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Gauvreau, B.

A. Hassani, B. Gauvreau, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for applications in the visible and near-IR,” Electromagnetics 28, 198-213 (2008).
[CrossRef]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413-11426 (2007).
[CrossRef] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, P. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

Grogner, H.

M. N. Weiss, R. Srivastava, and H. Grogner, “Experimental investigation of a surface plasmon-based integrated optic humidity sensor,” Electron. Lett. 32, 842-843 (1996).
[CrossRef]

Gupta, B. D.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118-1129 (2007).
[CrossRef]

Harris, R.

R. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261-267 (1995).
[CrossRef]

Harris, R. D.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Hassani, A.

Hautakorpi, M.

Hirayama, E.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method,” Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Homola, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Hradiliva, J.

J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Imtaar, M.

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118-1129 (2007).
[CrossRef]

Kabashin, A.

A. Hassani, B. Gauvreau, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for applications in the visible and near-IR,” Electromagnetics 28, 198-213 (2008).
[CrossRef]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413-11426 (2007).
[CrossRef] [PubMed]

M. Skorobogatiy and A. Kabashin, “Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide,” Opt. Express 14, 8419-8424 (2006).
[CrossRef] [PubMed]

M. Skorobogatiy and A. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

Kabashin, A. V.

A. N. Grigorenko, P. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

A. V. Kabashin and P. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5-8 (1998).
[CrossRef]

Kolarova, P.

J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2140 (1968).

Kuhlmey, B. T.

Kukanskis, K. A.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Kurihara, K.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method,” Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Large, M. C. J.

Lavers, C. P.

C. P. Lavers and J. S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B 22, 475-481 (1994).
[CrossRef]

Lee, H. W.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Optical fiber hybrid-surface plasmon polaritons,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

Ludvigsen, H.

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

Mattinen, M.

Melendez, J. L.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Mills, D. L.

V. M. Agranovich and D. L. Mills, Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Nakamura, K.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method,” Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Nekvindova, P.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Nikitin, P.

A. N. Grigorenko, P. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

A. V. Kabashin and P. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5-8 (1998).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Prill Sempere, L.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Optical fiber hybrid-surface plasmon polaritons,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2140 (1968).

Russell, P. St. J.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Optical fiber hybrid-surface plasmon polaritons,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Sazio, P. J. A.

P. J. A. Sazio, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Schmidt, M. A.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Optical fiber hybrid-surface plasmon polaritons,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Schrofel, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Schuck, P.

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541-566 (1997).
[CrossRef] [PubMed]

Sharma, A. K.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118-1129 (2007).
[CrossRef]

Sheridan, A. K.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Skalky, M.

J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Skalsky, M.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Skorobogatiy, M.

Skorobogatiy, M. A.

A. Hassani, B. Gauvreau, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for applications in the visible and near-IR,” Electromagnetics 28, 198-213 (2008).
[CrossRef]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413-11426 (2007).
[CrossRef] [PubMed]

Skvor, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Spirkova, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Srivastava, R.

M. N. Weiss, R. Srivastava, and H. Grogner, “Experimental investigation of a surface plasmon-based integrated optic humidity sensor,” Electron. Lett. 32, 842-843 (1996).
[CrossRef]

Suzuki, K.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method,” Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Tyagi, H. K.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Optical fiber hybrid-surface plasmon polaritons,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Uttamchandani, D.

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24, 1469-1470 (1988).
[CrossRef]

Wang, L. L.

X. H. Yang and L. L. Wang, “Silver nanocrystals modified microstructured polymer optical fibers for chemical and optical sensing,” Opt. Commun. 280, 368-373 (2007).
[CrossRef]

Wang, R.

Weiss, M. N.

M. N. Weiss, R. Srivastava, and H. Grogner, “Experimental investigation of a surface plasmon-based integrated optic humidity sensor,” Electron. Lett. 32, 842-843 (1996).
[CrossRef]

Wilkinson, J. S.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

R. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261-267 (1995).
[CrossRef]

C. P. Lavers and J. S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B 22, 475-481 (1994).
[CrossRef]

Woodbury, R. G.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Yang, X. H.

X. H. Yang and L. L. Wang, “Silver nanocrystals modified microstructured polymer optical fibers for chemical and optical sensing,” Opt. Commun. 280, 368-373 (2007).
[CrossRef]

Yee, S. S.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Zhang, L. M.

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24, 1469-1470 (1988).
[CrossRef]

Zhang, X.

Anal. Chem. (1)

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method,” Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541-566 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

A. N. Grigorenko, P. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

M. Skorobogatiy and A. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Optical fiber hybrid-surface plasmon polaritons,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Electromagnetics (1)

A. Hassani, B. Gauvreau, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for applications in the visible and near-IR,” Electromagnetics 28, 198-213 (2008).
[CrossRef]

Electron. Lett. (2)

M. N. Weiss, R. Srivastava, and H. Grogner, “Experimental investigation of a surface plasmon-based integrated optic humidity sensor,” Electron. Lett. 32, 842-843 (1996).
[CrossRef]

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24, 1469-1470 (1988).
[CrossRef]

IEEE Sens. J. (1)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118-1129 (2007).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

X. H. Yang and L. L. Wang, “Silver nanocrystals modified microstructured polymer optical fibers for chemical and optical sensing,” Opt. Commun. 280, 368-373 (2007).
[CrossRef]

A. V. Kabashin and P. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5-8 (1998).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (1)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Science (1)

P. J. A. Sazio, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Sens. Actuators B (7)

J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

C. P. Lavers and J. S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B 22, 475-481 (1994).
[CrossRef]

R. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261-267 (1995).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2140 (1968).

Other (1)

V. M. Agranovich and D. L. Mills, Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematics of the two MOF-based SPR biosensors (a) without and (b) with the air hole defects in the near vicinity of the gold layers. In both cases, one layer of the air filled holes is used to confine light in the fiber core and to control the coupling strength between the core mode and a plasmon wave. Small air filled hole in the fiber core is used to lower the refractive index of a core-guided mode to facilitate phase matching with a plasmon. Two large semicircular metallized channels are integrated into the fiber structure to enable the flow of analyte. In design (b), structural defects in the form of three small holes are placed near the gold film and are used to tune a plasmon mode.

Fig. 2
Fig. 2

Loss spectra of the fundamental core-guided mode for the design shown in Fig. 1a. Loss peaks correspond to the excitation of a plasmon mode on the surface of metallized channels filled with aqueous analyte n a = 1.33 . Modal losses are shown for the biolayer thicknesses d bio = 0 and d bio = 10 , assuming the biolayer refractive index n bio = 1.42 . By changing the biolayer thickness one shifts the attenuation peak corresponding to the point of phase matching between the core-guided and plasmon modes.

Fig. 3
Fig. 3

Sensitivity of the MOF-based sensors to changes in the biolayer thickness. Data are presented for sensors with the three different values of the gold layer thicknesses d gold = 40 , 50, and 65 nm.

Fig. 4
Fig. 4

Comparison of the plasmonic loss peaks for the sensors featuring nonuniform and uniform gold layers. In thick solid curves we present losses of a sensor having nonuniform gold film with thickness that varies from 20 to 65 nm. For comparison, in thin dashed curves we present losses of a sensor having uniform 50 nm thick gold film. Data are presented for the two values of biolayer thicknesses d bio = 0 and d bio = 10   nm .

Fig. 5
Fig. 5

Comparison of sensitivities of the MOF-based sensors having nonuniform gold layer (thick solid curve) and uniform gold layers (thin dashed curves).

Fig. 6
Fig. 6

Comparison of the plasmonic loss peaks for the sensors featuring nonuniform and uniform biolayers. In thick solid curves we present losses of a sensor having nonuniform biolayer with thickness that varies from 10 to 55 nm. For comparison, in thin dashed curves we present losses of a sensor having uniform 10 nm thick biolayer, as well as losses of a sensor without biolayer.

Fig. 7
Fig. 7

Loss spectra of the fundamental core modes of the two MOFs shown in Fig. 1 (fibers with and without a tuning defect). Both curves are calculated assuming aqueous analyte n a = 1.33 , gold layer thickness g gold = 40   nm , and d bio = 0 . Insets (a) and (b) show energy fluxes of the near degenerate core-guided mode and a higher order plasmon mode for the MOF with a defect at the wavelength of a first absorption peak λ = 575   nm . Insets (c) and (d) show energy fluxes of the near degenerate core-guided mode and the fundamental plasmon mode for the MOF with a defect at the wavelength of a second absorption peak λ = 632   nm .

Fig. 8
Fig. 8

Amplitude sensitivity of the two sensors based on MOFs with and without a defect in their cross section [see Figs. 1a, 1b]. In both cases n a = 1.33 , d gold = 40   nm . Sensor based on the MOF with a defect shows a considerable enhancement of amplitude sensitivity in the vicinity of the first plasmonic peak.

Fig. 9
Fig. 9

Solid-core photonic bandgap fiber-based SPR sensor. (a) Schematic of a sensor. Solid core having a small central hole is surrounded by the honeycomb photonic crystal reflector. Two large channels are integrated into the fiber cross section to enable analyte access in the vicinity of the fiber core. Analyte channels are gold plated with a d gold = 35   nm film. Gold layer is bordered by a biolayer and aqueous analyte.

Fig. 10
Fig. 10

The effective refractive index of the fundamental core mode of a photonic bandgap fiber in the 580–1020 nm spectral region. Insets (I–IV) show strong mixing of the fundamental core mode and a plasmon mode in the vicinity of the first phase matching point λ = 600   nm . Insets (V) and (VI) show strong mixing of the fundamental core mode and a plasmon mode in the vicinity of the second phase matching point λ = 920   nm .

Fig. 11
Fig. 11

Losses of the fundamental core mode are shown for the cases of zero biolayer thickness (solid curve) and 20 nm thick biolayer (dashed curve).

Fig. 12
Fig. 12

Amplitude sensitivity of the photonic bandgap fiber-based sensor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S λ [ nm   nm 1 ] = lim d bio 0 d λ peak / d bio ,
S A ( λ ) [ nm 1 ] = ( α ( λ , d bio ) / d bio ) α ( λ , d bio ) .

Metrics